Домой Проводка Все для работы с токовой петлей от Maxim Integrated

Все для работы с токовой петлей от Maxim Integrated

11
0

Испытания автоматических выключателей iLab

Назначение

Испытания расцепителей автоматических выключателей проводятся с целью проверки соответствия временных и температурных пределов их срабатывания данным завода изготовителя, ПУЭ п. 1.8.37, ПТЭЭП приложение 3, п.28.6. Проверяется  механическое срабатывание, выдерживаемый кратковременный ток и электрическая прочность изоляции. Соответствие полученных в результате измерения данных номинальным параметрам дает гарантию безопасной работы автоматических выключателей.                           

Условия проведения измерений

  • испытания автоматов и аппаратов управления производят при температуре окружающей среды не ниже +100С.
  • относительная влажность воздуха не более 90 %.

Испытания автоматических выключателей состоят из:

Внешний осмотр

Внешний осмотр автоматов и аппаратов управления производится со вскрытием корпуса. Осмотру подвергаются все внутренние соединения и части выключателя, работа механизма включения и отключения, состояние изоляционных деталей, катушек  и блок- контактов.

Измерение сопротивления изоляции

Измерение сопротивления изоляции производится при полностью собранных аппаратах, а также при закреплении аппарата на основании.

Измерение сопротивления изоляции производится между каждым проводом (полюсом) аппарата и землёй, а также между каждыми двумя проводами (полюсами). Сопротивление изоляции должно быть не менее 1 МОм.

При измерении сопротивления изоляции автоматических выключателей совместно с присоединенными к ним кабелями и проводами, сопротивление изоляции должно быть не менее 0,5Мом.

Испытание повышенным напряжением

Испытание производится при вводе в эксплуатацию, капитальных ремонтах, а также при неудовлетворительных результатах измерения изоляции. Значение испытательного напряжения 1 кВ 50 Гц, продолжительность испытания 1 минута. В процессе текущих ремонтов допускается вместо испытания переменным напряжением производить одноминутное измерение изоляции мегомметром на напряжение 2500В.

Испытание производится пофазно с заземлением свободных от испытания фаз и полностью собранных аппаратах с установкой всех деталей, которые могут оказать влияние на результат испытания. Если испытуемый аппарат установлен на металлическое основание, то при проведении испытаний оно также должно быть заземлено.

Проверка действия максимальных, минимальных или независимых расцепителей автоматов и аппаратов управления (прогрузка)

d2f3b3f87635dfe230b2e18991b443eb.jpg

Работа расцепителей должна соответствовать заводским данным и требованиям обеспечения защитных характеристик.

Проверку максимальных расцепителей автоматических выключателей производят трёхкратным током расцепителя (если нет других указаний в паспорте автомата) с поправкой на температуру.

Расцепители автоматов с полупроводниковыми блоками защиты проверяют током блока защиты (обычно шестикратным).

Проверка производится из «холодного» состояния автомата. Произведя проверку одной фазы, можно сразу произвести переключения и приступить к проверке следующей.

Проверка времени срабатывания тепловых реле защиты электродвигателей: ток для проверки выбирают исходя и паспортных данных, при наличии времятоковых характеристик для конкретного реле ток прогрузки равен трёхкратному току реле (проверка из холодного состояния). После проверки трёхкратным током и остывания теплового элемента на реле подается  ток, равный 1,2Iн, при этом реле должно отключиться за время, равное 20 минутам.

Проверку электромагнитных расцепителей автоматических выключателей и расцепителей отсечки у выключателей с полупроводниковыми блоками защиты проводят по схеме: сначала выставляется ток равный 0,8Iрасц. и проверяется устойчивое несрабатывание выключателя, а затем установив ток равный 1,1Iрасц. проверяется срабатывание выключателя за определённое время засекаемое секундомером. Величина времени при проверке электромагнитных расцепителей и защиты отсечки полупроводниковых очень небольшая.

Проверка работы контакторов и автоматов  при пониженном напряжении оперативного тока для проверки включения и отключения

Значения напряжения срабатывания и количество операций при испытании автоматических выключателей и контакторов многократными выключениями и отключениями приведены ниже в таблице.

Операция Напряжение оперативного тока, % номинального Количество операций
Включение 90 5
Отключение 80 5
55dcc3a079b5a4deee32fe9e9400b126.png 63e45d54bbb455577ba23f9c5a25f8e8.png

i-ellab.ru

Номинальный ток автоматического выключателя Заметки электрика

Уважаемые гости сайта заметки электрика.

Сегодня я расскажу Вам как произвести расчет номинального тока автоматического выключателя. 

Практический каждый из нас сталкивается с такой задачей, но чтобы решить ее верно и правильно читайте данную статью.

Во-первых Вам необходимо определиться какой автоматический выключатель будем менять, либо это будет вводной автоматический выключатель, либо групповой автоматический выключатель.

Внимательно прочитайте мою статью как определить сечение провода. В данной статье я подробнейшим образом показал как рассчитать общую потребляемую мощность своей квартиры или коттеджа (дома, дачи). 

Пример расчета номинального тока будем вести по полученной суммарной мощности всей квартиры 11200 (Вт), и соответственно рассчитаю номинальный ток вводного автоматического выключателя.

Формула для расчета номинального тока автоматического выключателя:

Р — суммарная потребляемая мощность, (Ватт)

U — напряжение сети, (В)

Получили значение 50,9 (А). Т.к. в магазинах не продаются автоматические выключатели на ток 50,9 (А), то округляем до ближайшего стандартного ряда значений, т.е. 50 (А).

Стандартный ряд значений номинального рабочего тока автоматических выключателей:

Аналогично можно рассчитать номинальный ток автоматического выключателя для любой групповой линии. Главное знать суммарную потребляемую мощность этой линии.

После выбора номинального тока автоматического выключателя и его покупки необходимо произвести прогрузку первичным током. Как это сделать Вы можете узнать в моей статье прогрузка автоматического выключателя.

P.S. И как всегда интересное видео о лазерном шоу — иллюзии.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

HART-протокол

HART-протокол (Highway Addressable Remote Transducer Protocol) — цифровой промышленный протокол передачи данных на основе аналоговой токовой петли.

При его создании преследовалась цель сделать его совместимым с существующим аналоговым интерфейсом токовой петли, но добавить возможность передачи данных в цифровой форме. Исходя из этого, токовая петля была доработана таким образом, что получила возможность полудуплексного обмена данными. Для этого на несущий аналоговый сигнал накладывается цифровой (рисунок 10), и полученный модулированный сигнал передается по линии связи. Логическая единица цифровых данных кодируется синусом с частотой 1200 Гц, а ноль — 2200 Гц.

5d8e0b48d5a302c19eaacb8925ec239c.jpg

Рис. 10. HART-протокол

Из-за сильного различия частот аналогового (0…10 Гц) и цифрового (1200/2200 Гц) сигналов они довольно просто разделяются фильтрами приемника и проходят независимую обработку.

 

HART-модем DS8500

Для реализации HART протокола компания Maxim предлагает однокристальное решение — модем .

Чип содержит встроенные модулятор и демодулятор сигнала 1200/2200 Гц, имеет очень низкое энергопотребление и, благодаря интегрированной цифровой сигнальной обработке, требует незначительной внешней обвязки. Входной сигнал проходит семплирование на АЦП и поступает на цифровой фильтр/демодулятор. Такая конструкция модема позволяет уверенно обнаруживать сигнал даже в зашумленной среде. Выходной ЦАП генерирует синусоидальное напряжение и сохраняет сдвиг фаз при переключении частот 1200 и 2200 Гц. Низкое энергопотребление достигается за счет отключения схем приемника во время передачи сигнала и наоборот (при приеме не работает передатчик). Все это делает DS8500 идеальным решением для создания малопотребляющих передатчиков систем управления технологическими процессами.

Микросхема выпускается в миниатюрном 20-выводном корпусе TQFN 5х5х0,8 мм и рассчитана на работу в индустриальном температурном диапазоне -40…85°C.

На рисунке 11 представлена типовая схема применения DS8500.

 

3b320c287ce737de6bd4d90509c01b2a.jpg

 

Рис. 11. Типовая схема включения DS8500

Поскольку в чип интегрирован цифровой фильтр, то снаружи необходим только простой пассивный RC-фильтр. На резисторе R3 и конденсаторе С3 реализован фильтр нижних частот с частотой среза 10 кГц. С2 и R2/R1 образуют фильтр верхних частот с частотой среза 480 Гц. Резисторный делитель, образованный R1 и R2, обеспечивает смещение входного напряжения Vref/2 (R1 = R2) на входе АЦП. Конденсатор С4 обеспечивает развязку синусоидального сигнала с выхода ЦАП DS8500 и аналоговой токовой петли. Емкость С4 обычно выбирается не менее 20 нФ.

 

Описание категории Автоматы силовые

Автоматические выключатели предназначены для проведения электрического тока в нормальном режиме и отключения при токах перегрузки и короткого замыкания, то есть по какой либо причине, величина электрического тока становится выше расчетной для электропроводки, кабельной продукции  или электрооборудования, авт выкл расцепляет электрическую цепь.  После устранения неполадок, автомат вводится в работу, и цепь замыкается.

Основные характеристики автоматических  выключателей.

  • Номинальный ток выключателей – величина  тока, на которую рассчитан корпус и главные контакты автоматов для проведения электрического тока в продолжительном режиме.  Данная характеристика указывается в каталогах производителей, и влияет на предельную коммутационную способность автоматов. Зачастую путают величину номинального тока и величину уставки теплового расцепителя. 
  • Уставка срабатывания при токах перегрузки– величина тока, при превышении которой происходит срабатывания автомата при перегрузке.  В зависимости от  серии и типа расцепителя скорость срабатывания при превышении уставки варьируется
  • Уставка автоматического выключателя по короткому замыканию –величина тока, при котором происходит срабатывании расцепителя  при мгновенном увеличении пропускаемого тока.
  • Время токовая характеристика автоматического выключателя – зависимость скорости выключения автоматов  превышении тока выше выставленных значений. Знание время токовой характеристики необходимо для построения селективной цепи, обеспечивающей отключении нижестоящего в цепи оборудования. При реализованной селективной защите, в случае короткого замыкания в одной из комнат квартиры, срабатывает автомат обеспечивающий защиту только данной цепи, без обесточивания всей квартиры.
  • Номинальное напряжение – напряжении, е на которое рассчитан корпус выключателя. Большинство отечественных автоматов рассчитано на  660В переменного тока, и 220 440В постоянного тока.
  • Предельная коммутационная способность автомата – предельная  величина тока, при которой автомат совершит три срабатывания до полного разрушения. Среди конструкторов российских предприятий по трактовке данной характеристики нет единого мнения, поэтому аналогичные аппараты,  например ВА 5735 и ВА 0436 имеют разную величину ПКС
  • Наибольшая коммутационная способность – предельная величина тока которую выключатель сможет отключить.

Классификация выключателей автоматических

  • По способ установки автоматов

    • Стационарный – корпус автомата жестко фиксируется в щите с помощью винтов, шины крепятся непосредственно к автоматическому выключателю.
    • Выдвижной способ установки –корпус автомата крепится на раме, при проведении ремонта автомат выкатывается на шасси, шины крепятся непосредственно к выдвижной раме (корзине).
  • По типу расцепителей.

    • Тепловой расцепитель – обеспечивает расцепление  при т токах перегрузки, принцип работы основан на неодинаково расширении  при увеличении температуры металлов в биметаллической пластине.  Точность срабатывания критична к температуре окружающей среды.
    • Электромагнитный расцепитель – обеспечивает отключении при токах короткого замыкания, имеет фиксированную уставку, по умолчанию  10-12* In. 
    • Полупроводниковый расцепитель – электронный компонент выключателя, обрабатывающий поток электрического тока проходящий через автомат, и обеспечивающий отключение выше заданных значений. Позволяет выставлять менять уставки отключения при перегрузке и токах короткого замыкания и времени задержки срабатывания для создания селективной цепи. Некритичен к внешней температуре окружающей среды. 
  • По типу привода

    • Ручной привод –  включение автомата производится вручную
    • Электромагнитный привод – включение и отключение привода возможно дистанционно, с помощи подачи напряжения на управляющие контакты.
  • По способу присоединения и типу проводников: переднее и задние присоединение —  расположение присоединяемых проводников
  • По типу комплектов зажимов – присоединение с помощью шины (медной алюминиевой) кабель без кабельного наконечника, кабель с кабельным наконечником.
  • Области применения.
  • В электрических щитах и распред устройствах. например в   

Описание серий «Автоматы силовые»

Приближенные значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кв

Приближенные значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ

#G0Номинальный ток аппарата, А

Активное сопротивление, мОм, разъемных соединений

автоматического выключателя

рубильника

разъединителя

50

1,30

70

1,00

100

0,75

0,50

150

0,65

200

0,60

0,40

400

0,40

0,20

0,20

600

0,25

0,15

0,15

1000

0,12

0,08

0,08

3000

ПРИЛОЖЕНИЕ 5

Справочное

ПАРАМЕТРЫ ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ ТОКА

При отсутствии данных изготовителя об индуктивных () и активных () сопротивлениях измерительных трансформаторов тока допускается использовать значения, приведенные в табл. 20.

Таблица 20

Сопротивления первичных обмоток многовитковых трансформаторов тока

#G0Коэффициент трансформации трансформатора тока

Сопротивление первичной обмотки многовиткового трансформатора, мОм, класса точности

1

3

20/5

67

42

17

19

30/5

30

20

8

8,2

40/5

17

11

4,2

4,8

50/5

11

7

2,8

3

75/5

4,8

3

1,2

1,3

100/5

2,7

1,7

0,7

0,75

150/5

1,2

0,75

0,3

0,33

200/5

0,67

0,42

0,17

0,19

300/5

0,3

0,2

0,08

0,088

400/5

0,17

0,11

0,04

0,05

500/5

0,07

0,05

0,02

0,02

ПРИЛОЖЕНИЕ 6

Рекомендуемое

СОПРОТИВЛЕНИЕ КАТУШЕК АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

При отсутствии данных изготовителей об индуктивных () и активных () сопротивлениях катушек расцепителей и переходных сопротивлениях подвижных контактов автоматических выключателей допускается использовать значения этих сопротивлений, приведенные в табл. 21.

Таблица 21

Сопротивления катушек и контактов автоматических выключателей

#G0Номинальный ток выключателя, А

Сопротивление катушки и контакта, мОм

50

7

4,5

70

3,5

2

100

2,15

1,2

140

1,3

0,7

200

1,1

0,5

400

0,65

0,17

600

0,41

0,13

1000

0,25

0,1

1600

0,14

0,08

2500

0,13

0,07

4000

0,1

0,05

Примечание. В таблице указаны суммарные сопротивления катушек и контактов автоматических выключателей (серий А 3700 «Электрон» и ВА), для которых эти сопротивления зависят от их номинального тока и не зависят от типа выключателя.

ПРИЛОЖЕНИЕ 7

Рекомендуемое

РАСЧЕТ ПАРАМЕТРОВ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

При расчете периодической составляющей тока КЗ, обусловленного асинхронными электродвигателями напряжением до 1 кВ, необходимо учитывать не только их индуктивные, но и активные сопротивления.

Суммарное активное сопротивление, характеризующее асинхронный электродвигатель в начальный момент КЗ () в миллиомах рассчитывают по формуле

(35)

где — активное сопротивление статора, мОм;

— активное сопротивление ротора, приведенное к статору, при этом в миллиомах рассчитывают по формуле

(36)

где — кратность пускового момента электродвигателя по отношению к его номинальному моменту;

— номинальная мощность электродвигателя, кВт;

— механические потери в электродвигателе (включая добавочные потери), кВт;

— кратность пускового тока электродвигателя по отношению к его номинальному току;

— номинальный ток электродвигателя, А;

— номинальное скольжение, отн.ед.

Активное сопротивление статора электродвигателя () в миллиомах, если оно не задано изготовителем, рассчитывают по формуле

, (37)

где — номинальное скольжение асинхронного электродвигателя, %.

Сверхпереходное индуктивное сопротивление асинхронного электродвигателя () в миллиомах рассчитывают по формуле

, (38)

где — номинальное фазное напряжение электродвигателя, В.

ПРИЛОЖЕНИЕ 8

Рекомендуемое

ПАРАМЕТРЫ КОМПЛЕКСНОЙ НАГРУЗКИ

1. В состав комплексной нагрузки могут входить асинхронные и синхронные электродвигатели, преобразователи, электротермические установки, конденсаторные батареи, лампы накаливания и газоразрядные источники света.

2. При определении начального значения периодической составляющей тока КЗ комплексную нагрузку в схему прямой последовательности следует вводить эквивалентной сверхпереходной ЭДС и сопротивлением прямой последовательности , а в схему обратной и нулевой последовательностей — сопротивлениями обратной и нулевой последовательностей.

3. Значения модулей полных сопротивлений , и , а также эквивалентной сверхпереходной ЭДС комплексной нагрузки в относительных единицах при отсутствии других, более полных данных, могут быть определены по кривым, приведенным на черт.10 и 11 в зависимости от относительного состава потребителей узла нагрузки , где — суммарная номинальная активная мощность нагрузки, кВт; — установленная мощность потребителя нагрузки, кВт (- асинхронные двигатели, — синхронные двигатели, — лампы накаливания, — электротермические установки, — газонаполненные лампы, — преобразователи).

Зависимость параметров комплексной нагрузки

, , , от ее состава

Черт. 10

refdb.ru

Основные разновидности отсечки

Описываемый способ (в том числе и для трансформаторов) делится на несколько видов. На сегодняшний день известно две разновидности токовой отсечки. Отличаются они друг от друга временем срабатывания и выдержке. Рассмотрим каждый вид более подробно:

  • С выдержкой времени. В такую отсечку во время производства включают специальное устройство, позволяющее задавать временные параметры. Диапазон срабатывания отсечки при участии специального устройства не превышает 6 секунд. Устройство, помогающие регулировать и одновременно контролировать время подачи тока называют автоматическим селективным выключателем. Надо заметить, что селекция используется не всегда и она необязательна. Для максимальной защиты всей линии зачастую используется устройства с дифференциальной защитой.
  • Мгновенная отсечка. Все действия системы контролируются собственным временем токовой отсечки. Все происходит автоматически. Принцип действия не основывается на дополнительном временном устройстве (то есть выдержке). Главный элемент во мгновенном виде — это токовое реле. Реле отвечает за подачу отключающего сигнала расцепителю выключателя. Наряду с реле, используются и некоторые вспомогательные элементы. Среди них выделяют специальные релейные устройства, которые установлены с целью подачи своевременного сигнала на разрыв. Диапазон срабатывания в автоматическом режиме мгновенной отсечки — от 4 до 6 секунд.

Исходя из рассмотренного, можно заключить, что защита выключателям и трансформаторам предоставляется самыми различными способами. Благодаря продуманным подходам надёжную защиту получают не только начальные или конечные участки цепей, но и вся электрическая цепь.

Что называют отсечкой

8343339fad8f20b3a4bf90a054ae1f79.jpgВ самом начале обсуждения этой темы, следует ближе познакомиться с понятиями. Отсечкой называют мгновенную и действующую защиту. Она используется на специальных токовых участках. Зона применения имеет свои границы. Она ограничивает в определённом смысле распространение тока. А каков же принцип действия токовой отсечки?

Чтобы дать ответ на этот вопрос, достаточно напомнить принцип работу электрической сети. По мере удаления от источника питания происходит падение показателей тока. Происходит это из-за увеличения возникающего сопротивления. Именно в момент уменьшения показателей своё действие начинает токовая отсечка. Она должна предотвратить возникновение разного рода поломок и повреждений (например, в работе трансформатора). При этом показатели отсечки в трансформаторе или другой системе обязательно должны быть выше и мощнее показателей максимального значения тока.

Владельцам частных домов будет полезна статья о том, как подключить генератор к сети дома.

Из чего состоит такая форма защиты?

Рассматриваемый способ устранения возникающих коротких замыканий вначале рабочей зоны состоит из следующих элементов:

  • Цепь сигнализации. Работает на основе бинкеров. Такие цепи предназначены для анализа действия защиты, а также выступают в качестве помощника для оперативного персонала, который следит за состоянием работы схемы. Кроме того, цепи сигнализации способны контролировать действия цепей управления.
  • Измерительный орган. Располагается в реле тока. Измерительный орган срабатывает при возникновении металлического замыкания. Такое замыкания может случиться в конце зоны защиты. Эта составляющая часть отсечки реагирует на изменения даже при минимальной нагрузке.
  • Промежуточное реле. Реле тесно связано с измерительным органом. От измерительного органа передаётся напряжение на промежуточное реле. Поступивший на реле контакт далее попадает на силовой выключатель (соленоид отключения). Промежуточный орган отключает силовой выключатель.
  • Реле времени. Иногда в состав включён и этот элемент. Реле времени, как правило, располагается между исполнительным органом и измерительным. Главная задача временного реле — создание временной задержки во время срабатывания сразу нескольких защит.

Средства отладки

Компания Maxim предлагает несколько аналоговых модулей для изучения токовой петли.

 

Cupertino (MAXREFDES5#)

MAXREFDES5# (рисунок 12) — это универсальный аналоговый модуль компании Maxim для работы с аналоговыми сигналами в диапазоне ±10 В и токовой петлей 4…20 мА. Плата имеет гальванически изолированную систему питания и обеспечивает гальваническую развязку сигналов данных.

 

bb3b7765da01810e8111f12d5c51eb6b.jpg

 

Рис. 12. Cupertino (MAXREFDES5#)

В основе Cupertino лежит малопотребляющий 16-разрядный АЦП последовательного приближения MAX1301, осуществляющий преобразование аналоговых сигналов и передачу полученных результатов по SPI-шине. Для буферизации аналоговых сигналов установлены операционные усилители MAX9632. Гальваническая развязка обеспечивается цифровым изолятором MAX14850 и драйвером трансформатора MAX256.

Cupertino выполнен в виде отдельного модуля, что позволяет использовать его в микропроцессорных системах собственной разработки как готовое устройство.

Для оценки возможностей можно использовать отладочные платы Nexys 3 или ZedBoardTM, выполненные на основе довольно мощных ПЛИС. MAXREFDES5# подключается к этим платам в качестве дополнительного модуля.

 

Campbell (MAXREFDES4#)

MAXREFDES4# (рисунок 13) — это законченное решение для работы с аналоговыми сигналами в диапазоне 0,2…4,096 В или токовой петлей 4…20 мА. Плата обеспечивает гальваническую изоляцию питания и сигналов данных.

 

e7e2e9f997d57cede00a690a3a8a2088.jpg

 

Рис. 13. Campbell (MAXREFDES4#)

В основе Campbell лежат высокоточный 16-разрядный АЦП MAX11100 и прецизионный малошумящий операционный усилитель . Решение выполнено в виде отдельного модуля, что позволяет использовать его самостоятельно в своих разработках.

Для знакомства также подойдут отладочные платы Nexys 3 или ZedBoard.

 

Виды МТЗ и схемы

К основным видам максимальной токовой защиты относят:

  • С независимой выдержкой времени от тока. Из названия ясно, что при любых перегрузках величина выдержки времени остаётся неизменной.
  • С зависимой выдержкой времени. Время зависит нелинейно от величины тока, по принципу: больше ток — быстрее отключение. Такая система позволяет точнее учитывать перегрузочную способность элементов цепи и осуществлять защиту от перегрузки.
  • С ограничено-зависимой выдержкой времени. График зависимости состоит из двух частей. У него параболическая форма (как во втором случае), совмещенная с прямой линией (как в первом случае), где по вертикальной оси расположен ток, а по горизонтальной время. При этом его основание стремится к параболе, а с определенных схемой пределов переходит в прямую. Так достигается точная настройка срабатывания при малых превышениях, например при подключении мощных потребителей и групповом пуске электродвигателей.
  • С блокировкой минимального напряжения. Также нужна для предотвращения отключения питания при пусковых токах. При возрастании тока выше уставки, если реле напряжения не срабатывает по минимальному значению (как при КЗ), то и напряжение не отключается.

По роду тока в оперативных цепях выделяют МТЗ:

  • с постоянным оперативным током;
  • с переменным оперативным током.

По количеству реле различают максимальные токовые защиты на базе:

  • Трёх реле. Обеспечивают защиту и при многофазном и при однофазном замыканиях.
  • Двух реле. Дешевле предыдущих, но не дают такой же надежности, особенно при однофазных замыканиях.
  • Одного реле. Еще дешевле и еще менее надежны, не применимы на ответственных участках линии. У них малая чувствительность и применяется в распределительных сетях от 6 до 10 кВ и для защиты электродвигателя.

На схемах:

  • KA — реле тока;
  • KT — реле времени;
  • KL — промежуточное реле, устанавливается если не хватает коммутационной способности контактов;
  • KH — указательное реле (блинкер);
  • SQ — блок контакт для размыкания мощных цепей, типа катушки YAT — силового коммутационного аппарата. Устанавливается так как контакты реле не рассчитываются на размыкание таких цепей.

Современные защиты часто уходят от применения релейных схем из-за особенностей их надежности. Поэтому используются МТЗ на операционных усилителях, микропроцессоре и другой полупроводниковой технике.

c8412a7df31e58c8189c65bbfa3f436c.jpg

Современные решения позволяют более точно выставлять уставки по току и время-токовые характеристики защит.

Заключение

Компания Maxim имеет в своем арсенале все необходимое для организации передачи информации по токовой петле. Выбор операционных усилителей, ЦАП и АЦП поистине колоссален и может удовлетворить практически любые требования разработчиков. Имея в своем распоряжении такую элементную базу, можно создать как самое простое и недорогое решение, так и сложный многофункциональный комплекс с уникальными возможностями.

Все изложенные в данной статье схемотехнические решения не следует воспринимать как догму. Аналоговая электроника очень сложна и не имеет универсальных решений. Набор элементов всегда уникален для каждого конкретного случая.

 

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here