Домой Электрика Как сделать плавный пуск для электроинструмента своими руками

Как сделать плавный пуск для электроинструмента своими руками

69
0

Блоки плавного пуска с тремя проводами

Кстати будьте внимательны, есть похожие устройства, но с тремя проводками. Например XS-12/D3.2af6c2ed08e2a95a2d0a37a21fc8c8f0.jpg

Или другие модели внешне похожие на KRRQD.

00c38ea58e71cede8643c52d25aa8194.jpg
4bcdc49869619183553799634bcefbcf.jpg

Но они собраны на несколько другом принципе и их нужно устанавливать после кнопки ПУСК, в самом инструменте. Напряжение на них должно подаваться только в момент замыкания пусковой кнопки болгарки и сразу исчезать после ее отпускания.

Схема подключения на них следующая:cede7a47d5169ff0af420aad78d5ba46.jpg

Фаза подается на контакт «А», ноль на «С». Далее фаза выходным проводом управления идет на двигатель (это как раз третий проводок).

Без кнопки такое устройство будет постоянно под напряжением 220В, что не допустимо.

В двухпроводном блоке такого нет, так как подключается он в разрыв цепи, и напряжение (разность потенциалов) к нему прикладывается только в момент пуска и работы инструмента.

Еще один момент — так называемый электрический тормоз или тормозная обмотка на торцовках. С 3-х проводным внешним УПП он может не работать, а вот с 2-х проводной моделью будет.

Чем помогает УПП

Во время запуска двигателя крутящиеся механизмы способны в два раза превышать номинальное значение, образуя пусковые токи, в несколько раз превосходящий средние рабочие показатели.

a3299765ba3e0ef39b1359ccdd15fa39.jpg

Подобные перезагрузки чреваты многими осложнениями:

  • Сильный перегрев;
  • Порча изоляции обмоток;
  • Срыв транспортерных лент;
  • Неисправность кинематической цепи;
  • Тяжелый пуск;
  • Остановка мотора.
0daaa04c7908dc995aac890b0fa7d7d5.jpg
6a256ebe6e4881290a982ef688f87095.png
c74abb26fb8c745d8acfe407dedf633d.png
dcf8dedcc60c7c711a0f86987da7e83d.png
2d48fe64ab8b853b34c7ebeff425240b.png
2a72d0cc545f7aa935074d3030c5714b.png

Устройство плавного пуска электродвигателя в разы сглаживает механические рывки и гидравлические удары, обеспечивая постепенное нарастание мощности и стабильную работу мотора. Недаром второе название прибора — софтстартер, что в переводе с английского означает «мягкий старт».

09781c4108696e3f89f1e13eb64fc089.jpg

На представленных фото устройства плавного пуска видно, что внешне механизм выглядит как набор схем и проводов, защищенных металлическим и пластмассовым корпусом. На самом же деле в основе прибора коммутационная аппаратура, тормозные колодки, блокираторы, противовесы и другие элементы, способные стабилизировать работу электрического двигателя.

bdff8764f930e862906b436a3cd4062d.jpg

Также механизм обладает и дополнительным функционалом:

  • Обеспечивает плавное торможение;
  • Защищает от короткого замыкания;
  • Предотвращает возможный обрыв фазы;
  • Исключает незапланированный самостоятельный пуск мотора;
  • Не допускает превышения номинальных рабочих значений;
  • Позволяет подобрать источник питания меньшей мощности;
  • Понижает расход энергии;
  • Экономит средства на эксплуатации и ремонте машины;
  • Снижает электромагнитные помехи.

Применение в болгарке

cc621fb812860b20b9f5d28c101eca96.jpgВо время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Как плавно запустить двигатель

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

36290e5367be1dd5b4fa09cda8ef7af7.jpg

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

874f7b5ec744ac3ffd6bc6196c585066.jpg

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

e4f88e301a6d07bc70f8b16ea2dcea96.jpg

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Устройство для пуска Шнайдер

Указанный стартер отличается повышенным входным напряжением на уровне 200 В. В данном случае пуск двигателей осуществляется через силовой трансформатор. Реле у этой модели используется с первичной обмоткой. Согласно документации на устройство, параметр пороговой перегрузки находится на отметке 40 А. Резистор в представленной конфигурации установлен построечный, а расширитель используется кодового типа. Проблемы со сменой фазы у данного устройства возникают довольно редко. Для преобразования тока применяется качественный модулятор. Регулятор скорости вращения асинхронного электродвигателя электромагнитного типа. Производителем предусмотрен расширительный динистор у модели этого типа. Стабилитрон в устройстве отсутствует.

8ab859737ded1585de967d84cab8b23b.jpg

ПУСК ПО СХЕМЕ ЗВЕЗДА-ТРЕУГОЛЬНИК

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

214fb4404f265c78ec1d4df71241b7f4.jpg

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.
  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

В начало

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Электродвигатели и нагрузки проблема

7369e327f8c29568c7cc61b513005a86.jpgДело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Зачем понадобился плавный пуск двигателя

Итак, проблема — на котельной есть насосы подпитки котла водой. Всего два насоса, и включаются они по команде от системы слежения за уровнем воды в котле. Одновременно может работать только один насос, выбор насоса осуществляет оператор котельной путем переключения водяных кранов и электрических переключателей.

Насосы приводятся в действие обычными асинхронными двигателями. Асинхронные двигатели 7,5 кВт включаются через обычные контакторы (магнитными пускателями). А поскольку мощность большая, то пуск очень жесткий. Каждый раз при пуске возникает ощутимый гидроудар. Портятся и сами двигатели, и насосы, и гидросистема. Иногда такое ощущение, что трубы и краны сейчас разлетятся вдребезги.

Кроме того, когда котёл остывший, и в него резко подается горячая вода (так надо по технологии, около 95 °С), то происходят неприятные явления, напоминающие взрывообразное бурление.

Всего на котельной два идентичных котла, но во втором установлены частотники на насосы. Котлы (точнее, парогенераторы) вырабатывают пар с температурой более 115 °С и давлением до 14 кгс/см2.

Жаль, что конструкцией котла в электросхеме не предусмотрено было плавное включение двигателей насоса. Хотя котлы итальянские, на этом было решено сэкономить…

Повторюсь, что для плавного включения асинхронных двигателей мы имеем на выбор такие варианты:

В данном случае необходимо было выбрать тот вариант, при котором бы было минимальное вмешательство в рабочую схему управления котлом.

Дело в том, что любые изменения в работе котла должны быть обязательно согласованы с производителем котла (либо сертифицированной организацией) и с надзорной организацией. Поэтому изменения должны быть внесены незаметно и без лишнего шума. Хотя, в систему безопасности я не вмешиваюсь, поэтому тут не так строго.

Мои постоянные читатели знают, что теперь, после , я имею полное право выполнять работы по КИПиА в котельной.

Схема УПП

Схема наиболее распространенных УПП выполняется на базе ключей из встречно-параллельно включенных тиристоров.

d447ef8a61b334469e5e20ca6b705f1b.jpg

Плавная регулировка напряжения на обмотках достигается постепенным изменением угла проводимости полупроводниковых элементов путем подачи импульсов на управляющие электроды. После достижения номинального напряжения на обмотках включается шунтирующий контактор. При торможении электрической машины вначале отключается параллельно включенный коммутирующий аппарат, затем с генератора пусковых импульсов поступают сигналы, постепенно уменьшающие угол проводимости тиристоров до полной остановки электродвигателя.

На рисунке представлена схема УПП с регулировкой по одной фазе. Такое устройство отличается невысокой стоимостью. Однако, при пуске возникает несимметричная нагрузка, увеличивается нагрев электромашины, возникают электромагнитные помехи. УПП такого типа используют для привода промышленного оборудования с нечастыми пусками.

1be058c6cbcf1ef8ee992840c10ecc1a.jpg

Для оборудования с тяжелыми условиями запуска применяют УПП с регулировкой по 2-м фазам.

0b9705ebabe6b5b80a31bc11b61b0ba4.jpg

Для технологических установок с особо тяжелыми условиями запуска и частыми включениями и отключениями привода используют УПП с симисторными ключами на всех трех фазах и обратной связью по току или напряжению. Их использование не вызывает дисбаланса тока на фазах, увеличения электромагнитных помех при запуске и торможении электрической машины.

Ряд параметров двигателя, задаваемых вручную

  • Номинальную мощность электродвигателя указанную в паспортной табличке.
  • Номинальное напряжение, указанное в паспортной табличке.
  • Номинальный ток указанный в табличке.
  • Основная частота. Задает номинальную частоту , указанную в его паспортной табличке.
  • Число полюсов двигателя. Задает число полюсов, указанное в его паспортной табличке.
  • Константа частоты вращения. Задает номинальную частоту вращения, указана в табличке.
  • Число импульсов на оборот генератора импульсов. Задает число импульсов на оборот для используемого генератора импульсов (генератор импульсов или кодировщик).
  • Ток холостого хода (стационарная автонастройка). Задает ток холостого хода. После задания мощности параметру T1-02 и номинального тока параметру T1-04 этот параметр будет автоматически отображать ток холостого хода для стандартного 4-полюсного двигателя Yaskawa. Вводит ток холостого хода, как указано в отчете о проведении испытаний.
  • Номинальное скольжение двигателя (стационарная автонастройка). Задает номинальное скольжение. После задания в устройство мощности двигателя параметру T1-02 этот параметр будет автоматически отображать скольжение для стандартного 4-полюсного двигателя Yaskawa. Вводит скольжение, как указано в отчете о проведении испытаний двигателя.
  • Потери двигателя в стали. Задает потери в стали для определения коэффициента энергосбережения. Это значение задается набору параметров E2-10 (потери двигателя в стали) при циклическом изменении мощности. При изменении параметра T1-02 появляется значение по умолчанию, соответствующее введенной мощности.

Процесс регулирования пуска

Сроки включения SCR — это ключ к управлению выходом напряжения для УПП. В течение пуска логическая схема УПП определяет, когда включить SCR. Он не включает SCR в точке, где напряжение идёт от отрицательного к положительному, но ждёт некоторое время после этого. Это известный процесс, называемый как «постепенное восстановление» SCR. Точка включения SCR установлена или запрограммирована тем, что начальный крутящий момент, начальный ток или ограничение тока строго регулируется.

ae2eb5a9f900cd62bb198845a13fb701.jpgРезультат поэтапного восстановления SCR представляет собой несинусоидальное пониженное напряжение на выводах двигателя, которое показано на рисунках. Поскольку двигатель является индуктивным, а ток отстаёт от напряжения, SCR остаётся включённым и проводит, пока ток не достигнет нуля. Это происходит после того, как напряжение стало отрицательным. Выход напряжения индивидуального SCR.

Если сравнивать с формой полного напряжения, можно видеть, что пиковое напряжение совпадает с полным волновым напряжения. Однако ток не увеличивается до того же уровня, что и при приложении полного напряжения из-за индуктивного характера двигателей. Когда это напряжение подаётся на двигатель, выходной ток выглядит, как на рисунке.

Поскольку частота напряжения равна так же, как и линейная, частота тока тоже одинакова. SCR поэтапно переходят к полной проводимости, пробелы в токе заполняются до тех пор, пока волновая форма не будет выглядеть так же, как у двигателя.

Операция с переменной скоростью вращения

a2d0143786bedacf32c2aa98eaa0f7ce.jpgСетевое напряжение переменного тока (рис. 5) выпрямляется с помощью пассивного диодного моста. Это означает, что диоды срабатывают, когда линейное напряжение больше напряжения на секции конденсатора. Результирующая форма волны имеет два импульса в течение каждого полупериода, по одному для каждого окна диодной проводимости.

Форма волны показывает некоторый непрерывный ток, когда проводимость переходит от одного диода к следующему. Это типично, когда он используется в звене постоянного тока привода и присутствует некоторая нагрузка. Инверторы используют широко-импульсную модуляцию для создания выходных сигналов. Треугольный сигнал генерируется на несущей частоты, с которой инвертор IGBT переключится.

Эта форма сигнала сравнивается с синусоидальной формой волны на основной частоте, которая должна быть доведена до двигателя. Результатом является волновая форма U, показанная на рисунке.

Выход инвертора может быть любой частотой ниже или выше частоты линии до пределов инвертора и/или механические пределы двигателя

Нужно обратить внимание на то, что привод всегда работает в пределах рейтинга скольжения двигателя.

Недостатки электроинструмента и срок службы

Общеизвестно, что далеко не всякий инструмент снабжен подобными схемами плавного пуска. В основном они идут в дорогих моделях известных брендов Bosch, Hilti, DeWalt. Причем как в сетевой линейке, так и в аккумуляторной.7c80d45f427657d672e28b8e7e4f151f.jpg

Электроинструмент без такого устройства имеет кучу недостатков:

  • искрение якоря на коллекторе с выгоранием ламелей якоря
  • выгорание щеток и более быстрое их стачивание
  • чаще выходят из строя обмотки ротора и статора
  • токовый бросок в общую электросеть

6e73462fc014e58f4229403e68d123c3.gif

  • удары шестерней друг о друга и более быстрое их срабатывание
  • опасный рывок при запуске, вырывающий инструмент из рук и повышающий травмоопасность

При работе с торцевой пилой имеющей ПП, диск не будет сбиваться с подготовленной точки реза

Что немаловажно для непрофессиональных столяров.

Если у вас на даче или в доме на начальном этапе строительства еще нет электроэнергии и вы пользуетесь генератором, то рано или поздно поймете, что без БПП (блока плавного пуска) с резкими начальными токами, генератор долго не протянет. Поэтому такая штука способна сберечь не только инструмент, но и аварийные источники питания.08af57f637a7235aee2edac14268f165.jpg

Можно конечно самостоятельно встроить БПП во внутрь той же болгарки или торцовки, однако разбирать технику и ковыряться во внутренностях охота далеко не каждому.

29d5cd8f36b43fbce45aef994dad1923.jpg
bf4273ed0b3d05547b90a0e00c83973b.jpg

Плюс ко всему прочему, вскрытие нового корпуса влечет за собой потерю гарантии. Поэтому лучшее применение для блока KRRQD12A — это внешнее подключение.

Только имейте в виду, подходит он для коллекторных двигателей. Для асинхронных нужен частотник с другими принципами регулирования.

Данная коробочка рассчитана на ток 12 Ампер.b34b6d6a029590e60331313474b24462.jpg

Есть и более мощная модель на 20А.

Что характерно, габариты у них одинаковые, а разница в цене пару десятков рублей.61a406326467306d8f6e4ed40063cd0e.jpg

Казалось бы лучше взять ее, но для стандартной розетки в 16А более выгоден первый вариант. Не будет желания подключать более мощную нагрузку и тем самым подпалить все контакты.

Мастера самоделкины конечно собирают подобные схемки и своими руками, на основе тиристоров ВТА 12-600 или других, конденсаторов, динистора и парочки мелких резисторов. Примеров схем в интернете можно найти множество.0e8a965f96f08dc3916704f3d3b45427.jpg

Но рядовому пользователю инструмента, гораздо проще все это купить в уже готовом компактном корпусе. Заказать подобный блок можно по ссылке .

Самодельные варианты

8def6a35fa2540a1dcf823190cbb9c43.jpgСуществует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

9dd53d1ac08231f9282d73b47c759308.jpg

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

2cb439cf744882f653d200e9d767f0d5.jpgБлагодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

b63111d6b52601bd8066bc1755490b2b.jpg

Схема 2. Схема плавного пуска электроинструмента

7088953ca7ccd1a7cf79f4a8e80bcc49.jpgУстройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

3be69ce9ebab346598e455cf37d83917.jpg

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

d4969372b5bdc5c6bb90dc1188c7b979.jpg

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Параметры привода для настройки плавного пуска

54f93305d1b512e0135ec71d0dd73870.jpgВ данном устройстве реализовано 3 возможных режима регулирования. Выбрать необходимо подходящий для задачи метод регулирования плавного пуска.

Частотное управление для асинхронных двигателей, общие приложения с переменной скоростью, особенно полезны для запуска нескольких электродвигателей от одного устройства и при замене привода, когда параметры неизвестны.

Частотное управление с обратной связью по скорости генератора импульсов, для приложений общего назначения, не требующих высоких динамических характеристик, но требующих высокой точности по скорости. Этот режим следует использовать если параметры схемы двигателя неизвестны и автонастройка не может быть выполнена.

Векторное управление с разомкнутым контуром. Общие приложения с переменной скоростью. Приложения требующие управления с высокой точностью и высокой скоростью.

Векторное управление с замкнутым контуром. Для общих приложений с переменной скоростью, требующих высокой точности управления скоростью вплоть до нулевой, быстрого увеличения крутящего момента или прецизионного управления крутящим моментом. Требуется сигнал обратной связи по частоте вращения двигателя.

Привод может работать в двух режимах: нормальном и тяжёлом. При нормальном режиме устройство может выдерживать перегрузку на 120% в течение 60 секунд, это используется в приложениях, где крутящий момент растёт с ростом скорости ( это вентиляторы и насосы ). В тяжелом режиме пуска устройство может выдерживать перегрузку до 150% в течение 60 секунд, это используется в приложениях, где имеются высокие нагрузки, где крутящий момент постоянен ( это экструзионные прессы, конвейеры, краны и прочие).

В настройках привода имеются параметры плавного пуска, существует четыре набора периодов разгона и торможения двигателя, которые могут быть заданы в параметрах. При необходимости S-кривые могут быть активированы, для более плавного начала и конца ускорения замедления.

Преимущества плавного пуска

Твердотельные плавные пускатели используют полупроводниковые приборы для временного снижения параметров на клеммах двигателя. Это обеспечивает контроль тока двигателя, чтобы уменьшить крутящий момент предельного значения двигателя. Управление основано на управлении напряжением клемм двигателя на двух или трёх фазах.

Несколько причин, почему этот метод предпочтительнее других:

  1. Повышенная эффективность: эффективность системы УПП с использованием твердотельных переключателей обусловлена в основном низким состоянием напряжения.
  2. Управляемый запуск: пусковые параметры можно контролировать, легко изменяя их, что обеспечивает запуск его без каких-либо рывков.
  3. Управляемое ускорение: ускорение двигателя контролируется плавно.
  4. Низкая стоимость и размер: это обеспечивается с использованием твердотельных переключателей.

Для чего нужен плавный пуск

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Изготовление розетки плавного пуска

Самое главное требование для такой розетки — это ее мобильность. Поэтому вам понадобится переноска.f39ec71538c0cb2dd32e8007d69eb675.jpg

С помощью нее можно будет плавно запускать инструмент в любом месте — в гараже, на даче, при строительстве своего дома на разных участках стройплощадки.

Первым делом переноску нужно разобрать.f7c28a334a707cd1b5950e8558b29516.jpg

Основные провода питания в ней могут быть либо припаяны, либо подсоединены на винтовых зажимах.4227d16f3e6b1dd108e4f3788540e964.jpg

В зависимости от этого, также будет происходить и подключение вашей дополнительной розетки. Это должна быть именно дополнительная розетка возле переноски, чтобы иметь возможность одновременно подключать инструмент в разных режимах.11cd3df2f965f242ae319cbb72ceabf1.jpg

Кстати, если вы по ошибке включите болгарку или циркулярку, имеющие заводской встроенный плавный пуск в розетку, также снабженной таким УПП, то на удивление все будет работать. Единственный момент — получится задержка запуска пилы или оборотов диска на пару секунд, что не очень удобно в работе и без привычки может озадачить.

Вот реальные испытания такого подключения, проведенные одним мастером с ютуб BaRmAgLoT777. Его комментарий после таких опробований на гравере типа Dremel, дреле Bosch, фрезере Makita, циркулярной пиле Интерскол:acd2d5aff08c102e4856bfa925bbb9ca.jpg

Далее для сборки розетки берете многожильный медный провод сечением 2,5мм2 и зачищаете его концы.e2bc1872703749d5285970978858a654.jpg

После чего необходимо залудить контактную площадку на переноске, куда будет припаиваться этот провод.c1bf35bd58cf7281d34403610178947d.jpg

Надежно припаиваете жилы кабеля к этим площадкам.d16a34754daca91a8a2c769704e65d48.jpg

Аккуратно укладываете провода и закрываете удлинитель.22ec0ccb4885a6a46571b8b569b77715.jpg

Берете квадратную наружную розетку для установки на внешней поверхности стен, и в ее корпус примеряете блок плавного пуска. Так как он имеет компактные прямоугольные размеры, то должен поместиться туда без особых проблем.dfbf3ae749ed183737dc952694c36ba6.jpg

Монтируете и закрепляете корпус розетки на одной площадке с удлинителем.

Блочок ПП подключаете в разрыв любого провода, фазного или нулевого. Не перепутайте, на него не подается одновременно фаза и ноль, т.е. 220В.

Он устанавливается на какой-то один из проводов.f7f607d2e918c86f80af684fa95249d5.jpg

Также для этого БПП, нет никакой разницы с какой стороны сделать вход, а с какой выход. Скрутки пропаиваются и изолируются термоусадкой.94b7d23106e4c44abf5e308fe0987f75.jpg

После чего, все внутренности розетки собираются в корпус и остается всю конструкцию закрыть крышкой.

На этом вся переделка переноски и изготовление розетки можно считать завершенной. По времени это займет у вас не более 15 минут.

Способы настроек устройства

cc4d14d53945aafe1fef4ab536a1528c.jpgТакже в параметрах устройства имеется возможность выбора способа предотвращения остановки во время разгона. ( в данной статье мы рассматриваем общую информацию о возможностях частотного привода, более подробную информацию о параметрах вы можете получить из руководства пользователя). Первый способ — общий. Разгон прекращается при превышении током уставки. Второй способ — интеллектуальный. Разгон в течение минимально возможного времени без превышения уровня предотвращения остановки двигателя во время разгона.

В устройстве имеетсявыбор способа предотвращения остановки двигателя во время торможения:

  • Первый способ — общий. Торможение прекращается, как только напряжение шины постоянного тока превысит уровень предотвращения остановки.
  • Второй способ — интеллектуальный. Максимально быстрое торможение без отказов из-за перенапряжения.
  • Третий способ — предотвращение остановки двигателя с помощью тормозного резистора. Предотвращение остановки двигателя во время торможения включается в координации с динамическим торможением.
  • Четвертый способ — торможение при работе с перевозбуждением. Торможение происходит по мере увеличения плотности потока магнитного поля электродвигателя.
  • Пятый способ — торможение при работе с перевозбуждением 2. Скорость торможения регулируется в соответствии с напряжением шины постоянного тока. Шестой способ — замедляет регулирование скорости торможения в соответствии с выходным током и напряжением шины постоянного тока.

65c0e34d41dda1dfb0d36d76e19cb12f.jpgДля установки необходимых параметров устройства используется автоматическая настройка асинхронного электродвигателя. Способы настройки двигателя: первый — стационарная настройка для междуфазного сопротивления; второй — вращательная автонастройка для частотного управления ( необходима для работы функций энергосбережения, оценки скорости и поиска скорости); третий — инерционная настройка ( перед инерционной настройкой необходимо выполнить вращательную настройку); четвёртый — настройка коэффициента усиления ASR ( перед настройкой своими руками необходимо выполнить вращательную автонастройку).

Схемы подключения пускателей

3ffa048b9a1878d88aee4704cc98c449.jpgСуществует два варианта, с помощью которых стартер осуществляет запуск электродвигателя: стандартная схема и внутри треугольника.

Стандартная схема. Пускатель соединён последовательно с линейным напряжением, подаваемым на двигатель.

Внутри треугольника существует ещё одна схема, по которой подключён пускатель, называется схемой внутренней дельты. В этой схеме два кабеля, которые подключаются к одному из двигателей, присоединяются непосредственно к источнику питания I/P, а другой кабель будет подключён через пускатель. Одна особенность этой схемы заключается в том, что пускатель можно использовать для больших двигателей, например, для двигателей мощностью 100 кВт, поскольку фазные токи делятся на 2 части.

Заключение

УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей

Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.

Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here