Домой Проводка Падение напряжения по разному сечению кабелей

Падение напряжения по разному сечению кабелей

213
0

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

Значение Формула
Базовый расчёт напряжения на участке цепи U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного тока U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

Значение Формула
Расчет сопротивления одного элемента R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводника R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Зачем необходимо производить расчеты

  • Во-первых, для определения требуемых параметров приобретаемого кабеля – , материал жил.
  • Во-вторых, чтобы правильно выбрать резервный источник эл/питания. Главным образом, по мощности.
  • В-третьих, для обеспечения нормального функционирования бытовой техники, предотвращения ее поломки. Особенно импортной, так как практически все модели «made in» очень капризны в плане качества эл/питания.

9647404a315c61465858cc4934257347.jpg

Когда нужно делать расчеты?

Как правило, ответ на этот вопрос звучит так – при большой удаленности объекта от электрогенератора. Это не стоит понимать буквально. Дело не в расстоянии между двумя точками по прямой, а в протяженности трассы! Ведь кабель в некоторых случаях прокладывается так, что она изобилует различными изгибами, поворотами и так далее.

В расчет принимаются его заложенные погонные метры, так как единица длины характеризуется определенным электрическим сопротивлением

Именно это и важно, ведь данный параметр напрямую влияет на падение напряжения.

. Тут уместно вспомнить закон Ома, и сразу все становится понятно. Дело в том, что для нормальной работы любой установки (прибора, механизма), к которой подводится напряжение, его падение на линии не должно быть более 2 % (для кабелей сечением до 16 «квадратов»)

На участке между ВРУ и потребителем – не свыше 4-х. Без учета этого качественное функционирование изделий не гарантировано.

Тут уместно вспомнить закон Ома, и сразу все становится понятно. Дело в том, что для нормальной работы любой установки (прибора, механизма), к которой подводится напряжение, его падение на линии не должно быть более 2 % (для кабелей сечением до 16 «квадратов»). На участке между ВРУ и потребителем – не свыше 4-х. Без учета этого качественное функционирование изделий не гарантировано.

8f88bcc8f9e8295eb06f841a5a107cb2.jpg

Для расчетов есть специальные онлайн-калькуляторы. В пояснительной записке по правилам их использования указывается, какие исходные данные требуется ввести. Это значительно облегчает задачу.

Длина линии (м) / Материал кабеля: МедьАлюминий
Сечение кабеля (мм²): 0,5 мм²0,75 мм²1,0 мм²1,5 мм²2,5 мм²4,0 мм²6,0 мм²10,0 мм²16,0 мм²25,0 мм²35,0 мм²50,0 мм²70,0 мм²95,0 мм²120 мм²
Мощность нагрузки (Вт) или ток (А):
Напряжение сети (В): Мощность 1 фаза
Коэффициент мощности (cosφ): Ток 3 фазы
Температура кабеля (°C):
Потери напряжения (В / %)
Сопротивление провода (ом)
Реактивная мощность (ВАр)
Напряжение на нагрузке (В)

Для тех, кто не сможет по какой-то причине воспользоваться данной услугой, можно привести формулу, по которой несложно произвести вычисления.

ΔU=(PRL+QXL)/U

Все величины должны быть в одной системе. Как правило, это международная, называемая СИ. С ней работать привычнее, а значит, удобнее.

  • U (В) – напряжение источника питания (220 или 380).
  • P (Вт) – мощность суммарной нагрузки.
  • R (Ом/м) – удельное сопротивление. Эту характеристику для конкретного металла жил можно найти в справочной литературе.
  • X – то же, но индуктивное.
  • L (м) – длина присоединяемого кабеля.
  • Q (ВАр) – мощность реактивная, так как напряжение – переменное.

c1905469517b9cb90864b071da76d45d.jpg

Некоторые данные отражены в паспорте на подключаемое изделие, поэтому их нужно учитывать. К примеру, для двигателя – это в первую очередь cosφ. Именно эта характеристика используется при расчете реактивной мощности (U х I х cosφ).

Примечание:

  • При расчете для линии 1 ф результат следует удвоить. Это связано с тем, что электрический ток проходит по 2-м жилам – фазе и нулю.
  • При ∆U больше допустимого придется менять схему подключения. Как вариант – прокладка двух параллельных кабелей от одного источника.

Расчет на потерю напряжения ЛЭП

Линии электропередач представляет собой компонент электрической сети, чья функция — передача электричества. Для расчета реактивных потерь в кабеле электропередач необходимо взять среднее реактивное сопротивление для алюминиевых или сталеалюминиевых кабелей, рассчитать нагрузки P и Q. Реактивную потерю можно вычислить следующим образом: ∆U = P∙r0∙L/Uном + Q∙x0∙L/Uном, активную — по формуле ∆Ua = ∆U — ∆Uр.

Также необходимо определить сечение провода (s = P∙L∙r0/(∆Ua∙Uном)) и найти в стандартном ряду соответствующее или ближайшее, а также найти это значение в таблице активного и реактивного сопротивлений на один километр линии.

На основе вычисленных показателей можно определить уточненную величину потери. При превышении допустимого показателя требуется с большим сечением.

Симптомы снижения напряжения у потребителя

Если эти показатели не соблюдаются, конечные потребители не смогут обеспечить номинальные параметры. При снижении напряжения возникают следующие симптомы:

  • Осветительные приборы, в которых используются лампы накаливания, начинают работать (светиться) в половину накала;
  • При включении электродвигателей уменьшается пусковое усилие на валу. В результате чего двигатель не вращается, и как следствие происходит перегрев обмоток и выход из строя;
  • Некоторые электроприборы не включаются. Не хватает напряжения, а другие приборы после включения могу выходить из строя;
  • Установки, чувствительные к входному напряжению, работают нестабильно, так же могут не включаться источники света, у которых нет нити накаливания.

Передача электроэнергии производится по воздушным или кабельным сетям. Воздушные изготовлены из алюминия, а кабельные могут быть алюминиевыми или медными.

В кабелях кроме активного сопротивления имеется емкостное сопротивление. Поэтому потеря мощности зависит от длины кабеля.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2 Линия с одной фазой Линия с тремя фазами
Питание Освещение Питание Освещение
Режим Пуск Режим Пуск
Медь Алюминий Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1 Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
6,0 10,0 6,1 2,9 7,5 5,3 2,5 6,2
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
35,0 50,0 1,15 0,6 1,29 1,0 0,52 1,1
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Как рассчитать потерю напряжения

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения используют следующую формулу:

U =(P*ro+Q*xo)*L/U ном:

  • Р – это активная мощность. Её измеряют в Вт;
  • Q – реактивная мощность. Единица измерения вар;
  • ro – выступает в качестве активного сопротивления (Ом);
  • хо – реактивное сопротивление (м);
  • U ном – это номинальное напряжение (В). Оно указывается в техническом паспорте устройства.

Согласно правилам устройства электроустановок (ПУЭ) допустимой нормой возможных отклонений напряжения принято считать:

  • в силовых цепях оно может составлять не выше +/- 6%;
  • в жилом пространстве и за его пределами до +/- 5%;
  • на производственных предприятиях от +/- 5% до -2%.

e86a5f4f0fe4067f3b6591c48010a163.jpgПотери электрического напряжения от трансформаторной установки до жилого помещения не должны превышать +/- 10%.

В процессе проектирования, рекомендуется сделать равномерную нагрузку на трехфазной линии. Допустимая норма составляет 0,5 кВ. В ходе монтажных работ электродвигатели необходимо подключить к линейным проводникам. Линия освещения будет заключена между фазой и нейтралью. В результате этого, нагрузка правильно распределяется между проводниками.

Когда рассчитывают потерю напряжения в кабеле, за основу берут данные значения тока или мощности. На протяженной электрической линии учитывают индуктивное сопротивление.

Калькулятор расчета потерь напряжения в кабеле

Длина линии (м) / Материал кабеля: МедьАлюминий
Сечение кабеля (мм²): 0,5 мм²0,75 мм²1,0 мм²1,5 мм²2,5 мм²4,0 мм²6,0 мм²10,0 мм²16,0 мм²25,0 мм²35,0 мм²50,0 мм²70,0 мм²95,0 мм²120 мм²300 мм²
Мощность нагрузки (Вт) или ток (А):
Напряжение сети (В): Мощность 1 фаза
Коэффициент мощности (cosφ): Ток 3 фазы
Температура кабеля (°C):
Потери напряжения (В / %):
Сопротивление провода (ом):
Реактивная мощность (ВАр):
Напряжение на нагрузке (В):

Как снизить потери ?

Одним из способов снижения потери напряжения в проводнике, является увеличение его сечения. Помимо этого, рекомендуется сократить его протяженность и удаленность от точки назначения. В некоторых случаях эти способы не всегда можно применить по техническим причинам.В большинстве случаем, сокращение сопротивления позволяет нормализовать работу линии.

Главным недостатком большой площади сечения кабеля, являются существенные материальные затраты в процессе использования. Именно поэтому правильный расчёт и подбор нужного диаметра, позволяют избавиться от этой неприятности. Калькулятор в режиме онлайн применяют для проектов с высоковольтными линиями. Здесь программа помогает правильно рассчитать точные параметры для электрической цепи.

Основные причины появления потери напряжения

701a6a140f0c3454bc657df9d0129664.jpgБольшие потери электрического напряжения возникают в из – за чрезмерного рассеивания энергии. В результате этого, поверхность кабеля сильно нагревается, тем самым провоцируя деформирование изоляционного слоя. Такое явление распространено на высоковольтных линиях, где отмечают большие нагрузки.

Чаще всего существенные потери наблюдают на протяженных электролиниях. Помимо этого, здесь отмечают большие финансовые расходы на электричество в процессе эксплуатации.

Таблица потерь напряжения по длине кабеля

a55fde644f2b35941a61801772f32f3d.jpg

Определение потерь напряжения по длине кабеля
Воспользуйтесь другими онлайн калькуляторами:

  • Расчет веса электрического кабеля
  • Онлайн расчет силы тока в цепи
  • Перевод Ватт в Амперы
  • Расчет катушки индуктивности

сечение провода Электрознайка. Домашний Электромастер.

Для подключения электрических устройств в сеть электрического тока необходимо учитывать ток проходящий по цепи , т.е. выбрать сечение провода.     Дело в том, что от сечения (диаметра) провода и его длины зависит его сопротивление в Омах.     По закону Ома падение напряжения U на проводе зависит от его сопротивления R и проходящего через него тока I.   U= R*I.     При передаче электрической энергии по проводам происходит потеря мощности:  чем меньше сечение провода (в мм.кв.) и чем больше ток потребления, тем больше потеря мощности в проводе.   P = U*I.    Исходя из этих соображений, необходимо знать допустимую величину тока в проводе в каждом конкретном случае.            Например, если примем плотность тока в проводе 5 ампер на мм.кв., а его сечение 2,5 мм.кв. то максимальный ток в проводе не должен превышать: 5 * 2,5 = 12,5 ампер.      Признавая потерю мощности в проводе, учитываем допустимый нагрев и способы его естественного охлаждения.         Если посмотреть рекомендуемую литературу (электротехнические справочники), разные авторы приводят разные данные по плотности тока в проводах. Вот одна из этих таблиц.

Например, для сечения провода 2,5 мм.кв. допустимый ток в проводе будет 20,0 ампер. Здесь рекомендуются очень большие плотности тока на 1мм.кв. провода.

Я не считаю себя экспертом в электротехнике, но имея большой практический опыт в обслуживании электрических устройств, прошу очень ответственно отнестись к рекомендуемым предложениям.

Даже если эта комнатная проводка проложена под штукатуркой и имеет хороший тепловой контакт со стеной.

Настораживает хотя бы такой факт, что в случае пожара в доме, квартире, при выяснении причины возгорания обычно указывают (как правило) на короткое замыкание в электропроводке.

Это ли было причиной пожара или нет, но как бы признается тот факт, что электрические сети в домах перегружены. А сегодняшнее «увлечение», в каждом домашнем хозяйстве, энергоемкими электрическими приборами, дополнительно усложнило  ситуацию.

Я рекомендовал бы ориентироваться на плотность тока в медном проводе не более 5 А/мм.кв. В алюминиевом проводе не более 3,5 А/мм.кв. Это с небольшим запасом на случай перегруза в сети.

Если ток в проводе превышает эти величины, то провод начинает греться, изоляция в местах  соединения проводника начинает обгорать или плавиться вплоть до отгорания самого провода, деталей контактов, зажимов прибора. При перегрузке током могут загореться и сами провода. На надежность проводов и кабелей влияют также и другие факторы:

  • — изоляция от повышенной температуры высыхает и при механическом воздействии  может отшелушиться от провода, оголяя его;
  • — в сырых помещениях прокладываемые провода и кабели должны иметь двойную резиновую или виниловую изоляцию;
  • — под влиянием  различных масел и кислот резиновая изоляция разбухает, от кислоты разрушается;
  • — изоляция  из пластмасс ( полиэтилен и др.) под воздействием повышенной температуры начинает плавиться, а при отрицательной температуре твердеет и трескается на изгибах;
  • — изоляция из полиэтилена и резины также портится под воздействием прямых солнечных лучей.

Все это нужно учитывать  при  выборе проводов и кабелей для подключения электроприборов при эксплуатации в различных условиях.

domasniyelektromaster.ru

Как пользоваться таблицей выбора сечения

Пользоваться таблицей 2 очень просто. Например, нужно запитать некое устройство током 10А и постоянным напряжением 12В. Длина линии – 5 м. На выходе блока питания можем установить напряжение 12,5 В, следовательно, максимальное падение – 0,5В.

В наличии – провод сечением 1,5 квадрата. Что видим из таблицы? На 5 метрах при токе 10 А потеряем 0,1167 В х 5м = 0,58 В. Вроде бы подходит, учитывая, что большинство потребителей терпит отклонение +-10%.

Но. ПрОвода ведь у нас фактически два, плюс и минус, эти два провода образуют кабель, на котором и падает напряжение питания нагрузки. И так как общая длина – 10 метров, то падение будет на самом деле 0,58+0,58=1,16 В.

Иначе говоря, при таком раскладе на выходе БП 12,5 Вольт, а на входе устройства – 11,34. Этот пример актуален для .

И это – не учитывая переходное сопротивление контактов и неидеальность провода (“проба” меди не та, примеси, и т.п.)

Поэтому такой кусок кабеля скорее всего не подойдет, нужен провод сечением 2,5 квадрата. Он даст падение 0,7 В на линии 10 м, что приемлемо.

А если другого провода нет? Есть два пути, чтобы снизить потерю напряжения в проводах.

1. Надо размещать источник питания 12,5 В как можно ближе к нагрузке. Если брать пример выше, 5 метров нас устроит. Так всегда и делают, чтобы сэкономить на проводе.

2. Повышать выходное напряжение источника питания. Это черевато тем, что с уменьшением тока нагрузки напряжение на нагрузке может подняться до недопустимых пределов.

Например, в частном секторе на выходе трансформатора (подстанции) устанавливают 250-260 Вольт, в домах около подстанции лампочки горят как свечи. В смысле, недолго. А жители на окраине района жалуются, что напряжение нестабильное, и опускается до 150-160 Вольт. Потеря 100 Вольт! Умножив на ток, можно вычислить мощность, которая отапливает улицу, и кто за это платит? Мы, графа в квитанции “потери”.

Кто платит за потери электричества

Потери электроэнергии при передаче (если передавать ее на большие расстояния) могут быть существенными. Это влияет на финансовую сторону вопроса. Реактивную составляющую учитывают при определении общего тарифа использования номинального тока для населения.

Для однофазных линий она уже включена в стоимость, учитывая параметры сети. Для юридических лиц эта составляющая рассчитывается независимо от активных нагрузок и в предоставляемом счете указывается отдельно, по особому тарифу (дешевле, чем активная). Делается это ввиду наличия на предприятиях большого количество индукционных механизмов (например, электродвигателей).

Органы энергонадзора устанавливают допустимое падение напряжения, или норматив потерь в электрических сетях. За потери при передаче электроэнергии платит пользователь. Поэтому, с точки зрения потребителя, экономически выгодно подумать о том, чтобы снизить их, изменив характеристики электрической цепи.

Похожие статьи

Причины падения напряжения

Наличие низких пусковых токов во многих случаях вызывают недопустимое увеличение токов в обмотках агрегатов. Из-за этого возникает перегрев электродвигателей и повреждение изоляции.

752f9c6befcdfcf8d26bed2ec744d250.jpg

Подобные ситуации возникают по следующим причинам:

  • Линия имеет большую протяженность. В связи с этим она обладает и более высоким сопротивлением.
  • Сечение кабелей, материал жил, протяженность линии и мощность нагрузки не соответствуют друг другу. Например, сечение проводника напрямую связано с , а материал, из которого он изготовлен – с удельными сопротивлениями алюминия и меди.
  • Зависимость от мощности нагрузки. При нагрузке с низким коэффициентом мощности падение напряжения будет выше, чем при более высокой активной составляющей.
  • Различные типы линий. Например, кабельные и воздушные линии существенно различаются между собой. Большое значение имеют расстояния между токоведущими жилами, из-за чего воздушная линия обладает более высокой индуктивностью и низкой емкостью в отличие от кабельных сетей. Поэтому сопротивление возрастает, вызывая увеличение падения напряжения.

Зачем нужен расчет потерь напряжения в кабеле

Предыстория такова. Проектировщикам выдали техническое задание на проект электроснабжения, в котором была указана мощность холодильных систем. Пока выполнялся проект и выделялись деньги на его реализацию, было куплено холодильное оборудование с потребляемой мощностью, в 2 раза превышавшей исходную. Кроме того, выяснилось, что реальное расстояние до подстанции будет почти в 2 раза больше…

В общем, дорогущее немецкое холодильное оборудование отказывается работать, все знают, что делать, но никто не хочет за это платить. Прошедшим летом из-за пониженного напряжения (линейное 340-360 В) сгорел компрессор стоимостью более 10 тыс.евро. Терпеть дальше это было нельзя. Меня попросили провести расчеты, мониторинг и измерения на системе питания, и дать рекомендации по решению проблемы.

Поскольку писал я этот отчет от лица фирмы, имеющей лицензию на энергоаудит, то этот документ будет иметь силу в предстоящей судебной тяжбе.

По ходу документа в цитатах буду давать комментарии и уточнения.

  1. Введение

Было проведено обследование качество электроэнергии, поступающей от трансформаторной подстанции (ТП) по первому участку (440 м) до ГРЩ 2.2 и далее по вторым участкам (50 и 40 м) на холодильные установки (Система 12 и Система 14).

Схема структурная данной системы:

Схема кабельных линий от ТП до нагрузки. ДЭС – дизельная электростанция есть, но в данном случае не рассматривается.

Цель обследования – выявить причины значительного падения напряжения на кабельной линии.

В Систему 12 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 124,6 50,5
Воздухоохладитель 78,3 27,1
Двигатели компрессоров 100 132,7
Двигатели вентиляторов 13,7 29,7
Итого 316,6 240

В Систему 14 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 234,4 81,2
Воздухоохладитель 193,9 55,7
Воздухоохладитель 15,2 31,3
Двигатели компрессоров 396 525,6
Двигатели вентиляторов 66 144,3
Итого 905,5 838,1

Напряжение питания – 380…415 В.

Значения токов, мощностей и напряжения взяты из паспортных данных потребителей.

Расчет значения потерь

0f91cbb82d194b946dc19ec34cf0540d.jpgДля обеспечения работоспособности оборудования необходимо произвести расчет. Он проводится в момент проектирования. Современный уровень развития вычислительной техники позволяет производить вычисления с помощью онлайн калькулятора, который позволяет быстро произвести расчет потерь мощности кабеля.

Для вычисления достаточно ввести необходимые данные. Задают параметры тока – постоянный или переменный. Материал линии электропередач – алюминий или медь. Указывают, по каким параметрам производится расчет потери мощности – по сечению или диаметру провода, току нагрузки или сопротивлению.

Дополнительно указывают напряжение сети и температуру кабеля (зависит от условий эксплуатации и способе прокладки). Эти значения подставляются в таблицу расчета и производят расчет с помощью электронного калькулятора.

Можно произвести расчет на основании математических формул. Чтобы правильно понять и оценить процессы, происходящие при передаче электрической энергии, применяют векторную форму представления характеристик.

А для минимизации расчетов трехфазную сеть представляют как три однофазные сети. Сопротивление сети представлено как последовательное подключение активного и реактивного сопротивления к сопротивлению нагрузки.

При этом формула расчета потери мощности в кабеле существенно упрощается. Для получения необходимых параметров используют формулу.

∆U= I*RL.

Эта формула показывает потерю мощности кабеля в зависимости от тока и сопротивления, распределенного по длине кабеля.

Однако, эта формула справедлива, если знать силу тока и сопротивление. Сопротивление можно вычислить по формуле. Для меди оно будет равно р=0,0175Ом*мм2/м, а для алюминия р=0,028Ом*мм2/м.

Зная значение удельного сопротивления вычисляют сопротивление, которое будет определяться по формуле

R=р*I/S, где р- удельное сопротивление, I-длина линии, S- площадь сечения провода.

Для того чтобы выполнить расчет потерь напряжения по длине кабеля, необходимо полученные значения подставить в формулу и произвести вычисления. Эти расчеты можно производить при монтаже электрических сетей или охранных систем и видеонаблюдения.

Если вычисления потери мощности не производить, то это может привести к снижению питающего напряжения потребителей. В результате произойдет перегрев кабеля, он может сильно нагревается, и как следствие происходит повреждение изоляции.

Что может привести к поражению людей электрическим током или короткому замыканию. Снижение напряжения в линии может привести к выходу их строя электронного оборудования.

Поэтому важно при проектировании электропроводки производить расчет потери напряжения в подводящих проводах и проложенном кабеле. .

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый – с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при , наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

03145dcfe41b2e228bb6b6820599fede.jpg

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор – к асинхронному мотору, еще один – к газоразрядной лампе, еще один – к сварочному, еще один – для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

687dce861367f10c2d23203e5889378b.jpg

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Последствия снижения напряжения

В соответствии с нормативной документацией, потери на магистрали от трансформатора до самой удаленной точки для общественных объектов не должны превышать 9%. Что касается возможных потерь в месте ввода линии к конечному пользователю, то этот показатель должен составлять не более 4%.

В случае отклонения от указанных пределов возможны следующие последствия:

  • Энергозависимое оборудование не сможет нормально функционировать.
  • При низком напряжении на входе возможен отказ в работе электроприборов.
  • Токовая нагрузка не будет распределяться равномерно между потребителями.

К характеристикам ЛЭП предъявляются высокие требования. При их проектировании необходимо рассчитать возможные потери не только в магистральных сетях, но и вторичных.

Как рассчитать потери напряжения в кабеле

Калькулятор позволяет произвести расчёт потерь напряжения в кабеле. Согласно ГОСТ 23875-88, потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения.  При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.  В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).  Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам: ΔU(в)=(PRL+QXL)/Uл; ΔU(%)=(100(PRL+QXL))/ Uл² или (если известен ток)  ΔU(в)=√3·I(R·cosφ·L+X·sinφ·L); ΔU(%)=(100√3·I(R·cosφ·L+X·sinφ·L))/ Uл , где:  Q= Uл·I·sinφ  Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам:  ΔU(в)=2·(PRL+QXL)/Uф; ΔU(%)=2·(100(PRL+QXL))/ Uф² или (если известен ток)  ΔU(в)=2·I(R·cosφ·L+X·sinφ·L); ΔU(%)=2·(100·I(R·cosφ·L+X·sinφ·L))/Uф, где:  Q= Uф·I·sinφ  Для расчёта потерь линейного напряжения U=380 В; 3 фазы.  Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

Для постоянного тока cosφ=1; 1 фаза.

P — активная мощность передаваемая по линии, Вт; Q — реактивная мощность передаваемая по линии, ВАр; R — удельное активное сопротивление кабельной линии, Ом/м; X — удельное индуктивное сопротивление кабельной линии, Ом/м; L — длина кабельной линии, м; Uл — линейное напряжение сети, В; Uф — фазное напряжение сети, В.

Для получения результата, внесите в поля калькулятора требуемые параметры и нажмите кнопку «Вычислить»

bouw.ru

Как рассчитать потери напряжения

Расчет трансформатора

По закону Ома, при протекании тока через сопротивление на нём появляется разность потенциалов. В этом отрезке кабеля при токе 53А, допустимом при открытой прокладке, падение составит U=I*R=53А*0,425Ом=22,5В.

Для нормальной работы электрооборудования величина напряжения сети не должна выходить за пределы ±5%. Для бытовой сети 220В – это 209-231В, а для трёхфазной сети 380В допустимые пределы колебаний – 361-399В.

При изменении потребляемой мощности и тока в электрокабелях падение напряжения в токопроводящих жилах и его значение возле потребителя меняется. Эти колебания необходимо учитывать при проектировании электроснабжения.

Выбор по допустимым потерям

При расчёте потерь необходимо учитывать, что в однофазной сети используется два провода, соответственно, формула расчёта падения напряжения меняется:

U=I*R=(p*2l)/S.

В трёхфазной сети ситуация сложнее. При равномерной нагрузке, например, в электродвигателе, мощности, подключенные к фазным проводам, компенсируют друг друга, ток по нулевому проводу не идёт, и его длина в расчётах не учитывается.

Если нагрузка неравномерная, как в электроплитах, в которых может быть включен только один ТЭН, то расчёт ведётся по правилам однофазной сети.

В линиях большой протяжённости, кроме активного, учитывается также индуктивное и ёмкостное сопротивление.

Принцип образования потерь напряжения

Расчёт можно выполнить по таблицам или при помощи онлайн-калькулятора. В ранее приведённом примере в однофазной сети и при расстоянии 100 метров необходимое сечение составит не менее 16мм², а в трёхфазной – 10 мм².

Выбор сечения кабелей по нагреву

Ток, текущий через сопротивление, выделяет энергию Р, величина которой рассчитывается по формуле:

Р=I²*R.

В кабеле из предыдущего примера Р=40А²*0,425Ом=680Вт. Несмотря на длину, этого достаточно для того, чтобы нагреть проводник.

При нагреве провода свыше допустимой температуры изоляция выходит из строя, что приводит к короткому замыканию. Величина допустимого тока зависит от материала токопроводящей жилы, изоляции и условий прокладки. Для выбора необходимо пользоваться специальными таблицами или онлайн-калькулятором.

Варианты определения U

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

2dc831b24e6aba77f6d3241f3a89636f.jpg
Схема 1

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.

29900eb7bf4c82b163ed36d68371c6c3.jpg
Схема 2

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

181f3aae18bb59564ce71cc345698f0a.jpg
Схема падения и потери напряженияa3e48cab2f93f09b8de83f241dc2fa48.jpg
Определение ΔU и потерь напряжения

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В)

Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

25728cc3394ee81ceeddbf6ac7dbef7d.jpg
Таблица 12cdcb95bfb4560aa5bdc2f795c6eadf5.jpg
Таблица 26bc30cb00312fb93a1253b1a9a5fd9e1.jpg
Таблица 3

Для всех таблиц принято ограничение – жилы должны быть из меди. Если читателю встретится такое определение, как момент нагрузки, – это как раз и будет число из таблицы Кнорринга для провода, соответствующее произведению мощности на длину.

Точные расчеты по формулам

Если по тем или иным причинам метод векторов и таблицы не устраивают, можно использовать либо формулы, показанные далее, либо калькулятор онлайн, на них основанный. Таких калькуляторов в сети немало, и найти подходящий несложно.

68032b23aa35dae86f49bb9122f52a3a.png
Расчет по формулам ΔU по длине кабеля

Похожие статьи:

Сопротивление металлов

Электрический ток – это направленное движение заряженных частиц. В металлах это движение свободных электронов сквозь кристаллическую решётку, которая оказывает сопротивление этому движению.

В расчетах удельное сопротивление обозначается буквой «p» и соответствует сопротивлению одного метра провода сечением 1мм².

Для самых распространённых металлов, используемых для изготовления проводов, меди и алюминия, этот параметр равен 0,017 и 0,026 Ом*м/мм², соответственно. Сопротивление отрезка провода вычисляется по формуле:

R=(p*l)/S, где:

  • l – длина,
  • S – сечение кабеля.

Например, 100 метров медного провода сечением 4мм² имеет сопротивление 0,425 Ом.

Если сечение S неизвестно, то, зная диаметр проводника, оно рассчитывается как:

S=(π*d²)/4, где:

  • π – число «пи» (3,14),
  • d – диаметр.

Пути снижения потерь мощности в кабеле

Наибольшее количество потерь обычно связано с установкой провода и его эксплуатацией. Основной способ снизить их — это максимально уменьшить сопротивление на всех участках электросетей. Несмотря на то что очевидное решение – увеличить сечение проводников, при котором уменьшается сопротивление, оно приводит к удорожанию монтажа и материала. ПУЭ рекомендуют использовать во внутридомовой разводке провода с сечением 2,5 мм2, а в бытовых сетях – 5 мм2.

Также можно использовать меры по снижению нулевого провода. В однофазной двухпроводной схеме предусмотрено получение тока по проводу-фазе, после чего он уходит по другому проводу – ноль. Снижение сопротивления фазы – трудоемкое и затратное занятие, в отличие от нулевого провода. Для этого проводится повторное заземление нуля на каждой опоре линии электропередач, то есть, по сути, проводится второй провод от нуля домашней сети до нуля трансформатора.

При расчетах потерь мощности в кабеле такой способ показывает значительную экономию тока, а также обеспечивает большую безопасность использования электроэнергии.

Помимо этого, значительная экономия электроэнергии происходит при содержании электросети в надлежащем состоянии. Для этого необходимо регулярно проверять прочность и плотность контактов, заменить все скрутки и подобные им контакты современными клеммниками. Это позволит снизить потери до минимума.

0cacdb1eb2d14e2ae7a6ab7c41f9a5eb.jpg

Также можно прибегнуть к следующим мерам:

  1. При использовании воздушных линий при обрыве линий электропередач образуется зона локального повышения сопротивления так называемой скрутки, где происходит деформация составляющих и нагрев.
  2. В качестве замены нужно взять . «Самонесущий» означает, что для него не требуется дополнительного троса для крепежа линии, он выдерживает свой вес под порывом ветра или снега.
  3. Замена кабеля на столбах. Для этого потребуется материал типа СИП-2А, СИП-3, СИП-4 с сечением не меньше 15 мм2, он способен пропустить до 63 А тока, что равно 14 кВт на одну фазу и 42 Квт на три. Такой элемент прослужит долго за наличия двойной изоляции и особым внешним покрытием.
  4. Для уменьшения расхода используют стабилизатор на входе к домашней сети или промышленного строения. Стабилизатор обеспечивает ±5 % на выходе, при колебаниях на входе — на ±30 %.
  5. Для снижения можно использовать трехфазный счетчик, подключенный к сооружению. За счет трех фаз уменьшается количество тока, идущего по каждой из них.

Такая проблема, как потери напряжения, может лишить вас дорогостоящих приборов и инструментов из-за колебаний входящего напряжения. Поэтому подойти к вопросу сохранения мощности нужно с ответственностью. Не стоит пренебрегать мерами сохранения энергии, а также стабилизаторами, которые нивелируют скачки напряжения, тем самым защищая бытовую технику в домах и оборудование на предприятиях.

Вывод по выбору сечения провода для постоянного напряжения

Чем короче и толще провод, по которому течет постоянный ток, тем меньше падение напряжения на нём, тем лучше. То есть, потеря напряжения в проводах минимальна.

Если смотреть на таблицу 2, нужно выбирать значения сверху-справа, не переходя в “синюю” зону.

Для переменного тока ситуация та же, но вопрос не стоит столь остро – там мощность передается за счет повышения напряжения и понижения тока. См. формулу (1).

В заключение – таблица, в которой падение постоянного напряжения задано пределом 2% , а напряжение питания равно 12 В.  Искомый параметр – максимальная длина провода.

Внимание! Имеется ввиду двухпроводная  линия, например кабель, содержащий 2 провода. То есть, тот случай, когда через кабель длиной 1 м ток делает путь 2 м, туда-сюда

Я привёл этот вариант, т.к. он чаще всего встречается на практике. Для одного провода, чтобы узнать падение на нём напряжения, надо число внутри таблицы умножить на 2. Спасибо внимательным читателям!

Таблица 3. Максимальная длина провода для падения постоянного напряжения 2%.

S,мм²

I,A

1 1,5 2,5 4 6 10 16 25 35 50 75 100
1 7 10,91 17,65 28,57 42,86 70,6 109,1 176,5 244,9
2 3,53 5,45 8,82 14,29 21,4 35,3 54,5 88,2 122,4 171,4
4 1,76 2,73 4,41 7,14 10,7 17,6 27,3 44,1 61,2 85,7 130,4
6 1,18 1,82 2,94 4,76 7,1 11,7 18,2 29,4 40,8 57,1 87 117,6
8 0,88 1,36 2,2 3,57 5,4 8,8 13,6 22 30,6 42,9 65,25 88,2
10 0,71 1 1,76 2,86 4,3 7,1 10,9 17,7 24,5 34,3 52,2 70,6
15 0,73 1,18 1,9 2,9 4,7 7,3 11,8 16,3 22,9 34,8 47,1
20 0,88 1,43 2,1 3,5 5,5 8,8 12,2 17,1 26,1 35,3
25 1,14 1,7 2,8 4,4 7,1 9,8 13,7 20,9 28,2
30 1,4 2,4 3,6 5,9 8,2 11,4 17,4 23,5
40 1,8 2,7 4,4 6,1 8,5 13 17,6
50 2,2 3,5 4,9 6,9 10,4 14,1
100 1,7 2,4 3,4 5,2 7,1
150 2,3 3,5 4,7
200 2,6 3,5

Наша полторашка по этой таблице может иметь длину только 1 метр. Падать на ней будет 2%, или 0,24В. Проверяем по формуле (4) – всё сходится.

Если напряжение выше (например, 24 В постоянного тока), то и длина может быть соответственно больше (в 2 раза).

Всё вышесказанное относится не только к постоянному, но и вообще к низкому напряжению. И при выборе площади сечения в таких случаях следует руководствоваться не только нагревом провода, но и падением напряжения на нём. Например, при .

Прошу прокомментировать статью, у кого как теория совпадает с практикой?

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here