Домой Проводка Петля фаза-ноль два провода, имеющие важное значение

Петля фаза-ноль два провода, имеющие важное значение

180
0

Петля фаза-ноль

Обеспечить работу электрического оборудования в квартире или на производстве без перебоев и проблем, опасных для жизни людей и для работоспособности приборов – это задача не из легких.

Такую функцию выполняют специальные аппараты защиты, которые необходимо устанавливать на объекте, чтобы избежать возникновения аварийных ситуаций (перегруз в сети из-за интенсивной или неравномерной нагрузки, короткое замыкание, удар молнии во время грозы, механическое повреждение силового кабеля или проводки). Это и будет определением понятия простым языком. Цель таких систем защиты – они должны незамедлительно сработать, иначе может возникнуть возгорание на объекте.

Но не стоит ждать, когда эта аварийная ситуация возникнет сама собой, целесообразнее будет провести заранее необходимые замеры и тестовые испытания электроустановок с целью выявить так называемые «узкие места». Одно из таких тестовых измерительных работ – это обязательное измерение петли фаза-ноль. Этот замер входит в число контрольных измерений, определяющих степень надежности пожарной и электробезопасности.

Измерение полного сопротивления петли фаза-ноль – почему это важно знать?

Контур, именуемый петлей фаза-ноль (можно встретить еще другие наименования –  его называют петля фаза-нуль, Ф-0) создается при соединении проводника фазы с рабочим нулевым или защитным проводниками. Измерение полного сопротивления петли «фаза-ноль» позволяет выяснить, насколько на вашем объекте велика вероятность возникновения короткого замыкания в электроустановках во время перегрузки или аварии сети. Тестирование «Ф-0» позволяет определить, правильно ли был выбран аппарат защиты и насколько быстро (произойдет ли?) отключение поврежденного отрезка сети в то случае, если возникнет угроза короткого замыкания на корпус.

Измерить, провести расчет полного сопротивления петли фаза-ноль собственными силами будет сложновато. Так как придется взять в расчет все промежуточные коммутаторы, имеющие собственные сопротивления, а рассчитывая силу тока в аварийном режиме, нужно будет учесть точный путь электротока через конструкции из металла, водо- и трубопроводы, заземляющий контур. Тогда как специальный прибор, используемый лабораторно, автоматически учтет все перечисленные сложности коммутации.

Вычисление или замер полного сопротивления петли «фаза-ноль» может понадобиться:

  • Для испытаний во время приема-сдачи электрической установки, вводимой в эксплуатацию после установки или реконструкции.
  • По запросу контролирующих организаций («Энергонадзор», «Укртехнадзор»).
  • По инициативе владельца объекта, на котором нужно протестировать, оптимизировать, укрепить надежность и усилить электротехническую и пожарную безопасность.

Принцип измерения сопротивления петли фаза-ноль

Замеры выполняются пошагово:

  1. Предосмотр: визуальная предварительная проверка, насколько плотно осуществлена стыковка проводов и установленных устройств защиты в цепи – это необходимо для корректности будущих измерений.
  2. Для получения искомых величин, являющихся целью проводимых измерений, выбирается наиболее дальняя точка в измеряемой электролинии или проводятся контрольные замеры по всей линии, если достигнуть дальней точки не представляется возможным.

Применяемые методики замеров:

  • Падение разности потенциалов в обесточенной цепи или на нагрузочном сопротивлении. Второй тип методики – наиболее удобный и безопасный способ измерения.
  • Искусственное создание короткого замыкания в цепи.

Источник: http://elektrik-online.kiev.ua/services/petlya-faza-nol-soprotivlenie

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При на экране устройства будет высвечиваться ошибка в виде символа «–», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:

  1. Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N.
    Испытание петли С-N
  2. Измерение в петле между одной из фаз и проводником РЕ.
    Испытание петли С-РЕ
  3. Измерения в цепях ТТ.

bdbd40ef770c7520cf9db67da87cb54d.jpgПодключение прибора в цепях с защитным заземлением

  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.

26816c5ad28308fa36a77d1a0e159818.jpgИспытание надежности заземления корпусов электрооборудования

Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов. . Получение информации о напряжении сети

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.

59bf3fdc775af688dc53627c4ee194f5.jpgУстройство MZC-303E для измерения характеристик петли «Ф-Н»

Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Измерение петли фаза-ноль методика

Для того чтоб понять методику ПФН, нужно обратиться к схематическому изображению, в котором есть присутствие подключения потребителя через розетку. Таким образом, подводим к розетке два провода, один – это фаза, а второй ноль, при этом до момента подачи напряжения в розетку происходит утеря мощности напряжения, так как происходит сопротивление магистрали проводов и кабелей.

Такой процесс с давних времен описан законом Ома.

Такая формула включает в себя сочетание величин с постоянным током. А для перевода формулы на переменный ток, необходимо учесть некоторые показатели.

А именно:

  • Показатель активной составляющей сопротивления электрической сети;
  • И показатель реактивно состоящего емкости и индуктивной части.

Должны все понимать, что образование электрического тока в трансформаторе, образуется за счет электродвижущей силы. Ток теряет часть своей мощности в тот момент, когда проходит через подводящий кабель к потребителю. При таком прохождение и сам ток проходит несколько видов сопротивления.

Конкретнее:

  • Самая существенная составляющая в сопротивлении – это активное, то есть провод и сам потребитель;
  • Сопротивление обмоток, которое преодолевает электрический ток – это индуктивное сопротивление;
  • Сопротивление отдельных элементов называется емкостное.

Для подсчета полного сопротивления электрической сети, нужно определить электрическую движущею силу, которая появляется в обмотке кабеля трансформатора. Единственно, что без особого разрешения на подстанцию вам не зайти, так что проводить замеры, вам придется проводить в розетке. Но при таком расчете розетка не должна находиться под нагрузкой. Только замера розетки без нагрузки, необходимо замерять ее под нагрузкой. Для такого замера, в розетку необходимо включить любой прибор и произвести замер.

Учтите тот факт, что нагрузка которая находится в розетке должна быть со стабильным показателем, в период проведения замеров. Также необходимо чтоб сила тока была от 15 до 2 ампер, а если нет такой силы, то дефекты сетевого участка могут не показаться.

98b608c15f139c0569273324688e927b.jpgДля измерения петли фаза-ноль нужно выставить в приборе специальный режим

После выполнения замеров можно определить полное сопротивление. При таком действие необходимо учесть, то, что напряжение в сети может быть нестабильным. Понятно то, что при нагрузке напряжение в сети повышается. Методика измерения цепи, где присутствует нуль и ИФН имеет свое определение. Для того чтобы получить доступную информацию и получить определение вам потребуется электрическая таблица.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

  • Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП  , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IAB <= UН . В данном случае IAB ток, при котором срабатывает АВ или другое устройство защиты, его величина должна уступать IКЗ.

Перед описанием детальных методик измерений, необходимо кратко описать прибор, который будет использоваться в процессе – MZC-300. Мы остановили свой выбор на этом устройстве, поскольку оно чаще всего применяется измерительными лабораториями.

Методика измерения петли фаза — ноль

Применяются следующие методы измерения: падения напряжения в отключенной цепи, то же – на нагрузочном сопротивлении и метод КЗ. Второй способ реализован в принципе действия прибора производства Sonel типа MZC-300. Методика выполнения измерений таким методом изложена в ГОСТе 50571.16-99. Достоинство этого метода – в простоте и безопасности.

Прежде, чем приступить к основным измерениям, следует испытать сопротивление и непрерывность защитных проводников. Во время проведения измерений прибором MZC-300 следует учитывать, что возможна автоматическая блокировка процесса в следующих случаях:

  1. Напряжение в сети превышает 250 В: прибор в это время издает звуковой продолжительный сигнал, а на дисплее появляется надпись «OFL». В таком случае измерения необходимо прекратить.
  2. При разрыве цепи PE/N на дисплее появится символ в виде двойного тире и будет звучать сигнал после нажатия на кнопку «start». Необходимо быть осторожным: защита от токов КЗ в сети отсутствует.
  3. При снижении напряжения в испытуемой цепи менее 180 В на дисплее загорается символ «U», что сопровождается двумя продолжительными звуковыми сигналами после нажатия на кнопку «start».
  4. В случае перегрева прибора из-за значительных нагрузок появляется на дисплее символ «Т» и звучат два сигнала. В этом случае нужно уменьшить количество операций за единицу времени.

Для проведения измерений соответствующие клеммы прибора подключают к одной из фаз и глухозаземленной нейтрали (в сети с защитным заземлением вместо нейтрали подключают прибор к заземляющему проводнику). При проверке состояния защиты электроустановки от замыкания на корпус прибор MZC-300 подключают к заземляющей клемме корпуса и фазному проводу. Необходимо следить за тем, чтобы контакт был надежным: применять следует проверенные наконечники (если необходимо – заостренные зонды), а место соединения должно быть очищено от окиси.

Во время измерения прибором серии MZC-300 происходит имитация короткого замыкания: ток протекает через резистор с известным сопротивлением (10 Ом) в течении 30 мс. Уменьшенное значение силы тока является одним из параметров, участвующих в образовании результата. Непосредственно перед определением значения такого тока прибор измеряет реальное напряжение в сети. Производится поправка по векторам тока и напряжения, после чего процессор высчитывает полное сопротивление петли КЗ, раскладывая его на реактивную и активную составляющие и угол сдвига фаз, образующийся в измеряемой цепи во время протекания тока КЗ. Диапазон измерения полного сопротивления выбирается прибором автоматически.

Считывание и оформление результата

11e2ed4fd521397b38d67a0e58299c51.jpgПосле измерения результат может быть отображен на дисплее в виде значения полного сопротивления петли КЗ или тока КЗ. Для просмотра и смены режима отображения следует нажать клавишу Z/I. Полное сопротивление отражает дисплей, а значение тока КЗ необходимо вычислять.

После подключения прибора к испытуемой цепи определяется напряжение, после чего нажатием на кнопку «start» включается измерительный режим. Если не действуют факторы, которые могут стать причиной блокировки процесса, на дисплее появляется ожидаемое значение тока КЗ или полного сопротивления. Если необходимо знать значения других параметров (реактивного и активного сопротивления, угол сдвига фаз), следует воспользоваться кнопкой SEL. Предельное значение реактивного, активного и полного сопротивления – 199,9 Ом. При превышении этого предела дисплей отразит символ OFL, если же прибор будет находиться в режиме измерения тока КЗ, отобразится символ UFL, означающий малую величину. При необходимости увеличить диапазон нужно использовать другую модификацию прибора — MZC-ЗОЗЕ: специальная функция RCD позволяет получить результаты до 1999 Ом.

Периодичность проведения измерений сопротивления петли «фаза – ноль» определяется документом ПТЭЭП и системой ППР, которая предусматривает своевременное проведение капитальных и текущих ремонтов электрооборудования. В случае выхода из строя устройств защиты после их ремонта или замены проводятся внеплановые работы по установлению значений параметров цепи «фаза – ноль».

Заключение о результатах измерений выполняется следующим образом. После выполнения всех работ по изложенной выше методике, получаем величину однофазного тока КЗ. Сравниваем результат с током, при котором срабатывает расцепитель выключателя-автомата или с номиналом плавко вставки. Делаем выводы о пригодности оборудования защиты. Все полученные результаты заносятся в протокол установленной формы.

Еще по теме:

Особенности работы автоматического выключателя

Конструкция устройства и принципы работы этой защиты изложены отдельной статьей. Рекомендую ознакомиться с ней.

Автоматический выключатель создан для оперативного снятия напряжения со схемы питания в случае ее перегрузки или возникновения короткого замыкания.

Защитные функции

Режим перегрузок

Первоначальную защиту электрической схемы раньше выполняли с помощью предохранителя, плавкая вставка которого просто перегорела и разрывала электрическую цепь под тепловым воздействием аварийного тока.

Эта функция осталась в конструкции автоматического выключателя. В нем она реализована тепловым расцепителем и выполняет защиту от перегрузок, снимая напряжение с защищаемого участка с выдержкой времени. Это необходимо для исключения частых отключений при возникновении переходных процессов от различных коммутаций схемы.

Определять зону работы теплового расцепителя, как и его второй составляющей — электромагнита отключения удобно с помощью времятоковой характеристики, указывающей зависимость времени срабатывания от величины аварийного тока, проходящего по контактам биметаллической пластины.

Режим коротких замыканий

При его возникновении к схеме прикладываются максимально возможные мощности, энергия которых способна расплавить металлические провода или вызвать пожар. Поэтому с целью сохранения оборудования необходимо выполнять очень быстрое снятие питания за тысячные доли секунды.

Это задача второй составляющей защиты автоматического выключателя: токовой отсечки, которую выполняет электромагнитный расцепитель.

Обе защиты автомата работают автономно, не зависят друг от друга, имеют собственные уставки и настройки. Однако они подобраны под конкретную величину рабочего номинального тока, призваны обеспечивать его нормальное прохождение без излишних, ложных отключений.

Принцип выбора автоматического выключателя

При определении его технических возможностей учитывают:

  • величину номинального тока в сети, на которую существенное влияние оказывает состояние электропроводки и подключаемые к ней нагрузки;
  • допустимый режим перегрузок;
  • отключающие способности возможных аварийных режимов.

Алгоритм выбора автоматического выключателя по номинальному току с учетом особенностей схемы электроснабжения показан на диаграмме.

Она позволяет сделать предварительный расчет необходимых параметров автоматического выключателя, подобрать его защитные характеристики.

Для проведения подобного расчета также можно воспользоваться

Что это такое, и как формируется проверочная схема

Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме

Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

Итак,  от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.Что это такое, и как формируется проверочная схема.

Приборы, используемые в процессе измерений петли фаза-нуль

С целью ускорения процедуры измерений петли, на практике применяют различную измерительную аппаратуру, наибольшее распространение среди которой получили:

  • М-417 – устройство, отличающееся надежностью, используется для осуществления измерений методом падения напряжения без отсоединения источника питания. Предназначен для цепи с напряжением 380 В и глухозаземленную нейтраль. Прибор способен рассоединить цепь за 0,3 секунды, к недостаткам можно отнести калибровку, которую необходимо производить при включении.
  • MZC-300 относится к новым устройствам, снабженным микропроцессором. Применяется та же методика в момент присоединения сопротивления, равного 10 Ом. Подходит для замеров напряжения в пределах 180-250 В. Процедура длится всего 0,03 секунды, данные при этом выводятся на дисплей.
  • ИФН-200 – многофункциональный прибор, измеряющий напряжение от 180 до 250 В при сопротивлении 10 Ом. Готовность к работе после включения равна 10 с. Снабжен памятью на 35 вычислений.

К измерениям, осуществляемым при помощи одного из методов, допускаются только хорошо обученные сотрудники. Неверное их проведение влечет за собой неправдивые показатели, что способно вывести из строя установку либо травмировать работников.

Меры безопасности при измерении петли Ф-Н

Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.

Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.

Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.

Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.

По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).

Краткое описание MZC-300

Рассмотрим внешний вид и основные элементы измерителя MZC-300.

a2afc2f4a6f898af806a0a8fcc56cc58.jpgРасположение основных элементов прибора MZC-300

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • ZП, напомним, это общее сопротивление цепи Ф-Н.
  • IКЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры ZП.
  • Ожидаемый IКЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Почему срабатывают автоматы на вводах

Причины частого и необъяснимого срабатывания автоматов на вводах бывают двух типов:

  1. Внешние, обусловленные нарушениями в работе электролинии.
  2. Внутренние, из-за неисправности электропроводки в доме.

Внешние характеризуются стойким несоответствием норме номинала напряжения. Например, оно у вас постоянно не 220, а 200 вольт. Это сопровождается увеличением силы тока, протекающего по вашей домашней электропроводке. Увеличение номинала автоматического выключателя на входе, например, с 25 до 40 А в этом случае вам ничего не даст, кроме того, что сам автомат будет нагреваться, а при дальнейшем вашем упорствовании может даже эффектно взорваться.

Внутренних причин несколько. Самые распространенные из них:

  • Неплотный контакт в клеммных коробках.
  • Не соответствующее номиналу тока сечение проводов.
  • Уменьшение сопротивления изоляции проводов в результате естественного старения.

Внешне они проявляются нагревом проводников и скруток. Поэтому установка более мощных автоматических выключателей приведет к пожару. Конечно, можно потратить день на то, чтобы руками перещупать все розетки, провода и скрутки в доме. Но, во-первых, это чревато электротравмой. И, во-вторых, слишком субъективно. Измерение даст лучший результат.

Подготовительный этап

Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как ZП и IКЗ

Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании

В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.

Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между и основными металлическими элементами конструкции здания.

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here