Домой Освещение Принцип работы генератора переменного тока

Принцип работы генератора переменного тока

122
0

Охлаждение генераторов переменного токаправить

879ed9d6922ea0728e926c45b90885e1.jpg
Генератор с водородным охлаждением, окрашен в красный цвет

Во время работы в генераторе возникают потери энергии, превращающиеся в теплоту и нагревающие его элементы. Хотя КПД современных генераторов очень высок, абсолютные потери достаточно велики, что приводит к значительному повышению температуры активной стали, меди и изоляции. Повышение температуры конструктивных элементов, в свою очередь, ведёт к их постепенному разрушению и уменьшению срока службы генератора[2][3]. Для предотвращения этого применяют различные системы охлаждения.

Выделяют следующие типы систем охлаждения: поверхностное (косвенное) и непосредственное охлаждение[2]. Косвенное охлаждение в свою очередь может быть воздушным и водородным.

Водородные системы охлаждения чаще устанавливаются на крупные генераторы, так как они обеспечивают лучший отвод тепла[4] (По сравнению с воздухом водород име­ет большую теплопроводность и в 10 раз меньшую плот­ность). Водород пожаро- и взрывоопасен, поэтому применяется изоляция вентиляционной системы и поддержание повышенного давления.

Параллельная работа синхронных генераторовправить

На электростанциях синхронные генераторы соединяются друг с другом параллельно для совместной работы на общую электрическую сеть. Когда нагрузка на электрическую сеть мала, работает только часть генераторов, при повышенном энергопотреблении («час пик») включаются резервные генераторы. Этот способ выгоден, так как каждый генератор работает на полную мощность, следовательно, с наиболее высоким коэффициентом полезного действия.

Синхронизация генератора с электрической сетью[править]

В момент подключения резервного генератора к электрическим шинам его электродвижущая сила должна быть численно равна напряжению на этих шинах, иметь одинаковую с ним частоту, и фазовый сдвиг равный нулю. Процесс выведения резервного генератора на режим, при котором обеспечивается указанное условие, называется синхронизацией генератора.

Если это условие не будет выполнено (подключаемый генератор не выведен на синхронный режим), то из сети в генератор может пойти большой ток, генератор заработает в режиме электродвигателя, что может привести к аварии.

Для выполнения синхронизации подключаемого генератора с электрической сетью применяются специальные устройства, в простейшем виде — синхроноско́п.

Синхроноскоп представляет собой лампу накаливания и «нулевой» вольтметр, включенные параллельно контактам рубильника, отключающего генератор от шин сети (соответственно сколько фаз, столько ламп накаливания и вольтметров).

При разомкнутом состоянии рубильника параллельная сборка «лампа накаливания — „нулевой“ вольтметр» оказывается включенной последовательно цепи «фаза генератора — фаза электросети».

После запуска генератора (при разомкнутом рубильнике) его выводят на номинальные обороты, и регулируя ток возбуждения, добиваются того, чтобы электрическое напряжение на клеммах генератора и на шинах сети было приблизительно одинаковым.

Когда генератор приближается к режиму синхронизации, лампы накаливания начинают мигать, и в момент почти полной синхронизации они гаснут. Однако лампы гаснут при напряжении, не равном нулю, для индикации полного нуля служат вольтметры («нулевые» вольтметры). Как только и «нулевые» вольтметры покажут 0  — генератор и электрическая сеть синхронизированы, можно замыкать рубильник. Если две лампы накаливания (на двух фазах) погасли, а третья — нет, это означает, что одна из фаз генератора подключена неправильно к шине электрической сети.

Применение

0867d27bf176361a466be2d4d959e54d.jpgПрименение электрических генераторов обширно. Они применяются практически везде, где это только возможно. Снабжаютнаши дома электроэнергией, заряжают аккумуляторы в автомобилях, используются в промышленности и многое другое.

В настоящее время стали популярны автономные бензиновые и дизельные электрогенераторы, которые могут служить источниками электрической энергии при её отключении, либо вообще при её отсутствии. Такие генераторы используются в быту и в строительстве, так как форма тока имеет искажения, то без применения специального инвертора, подключать к ним какие-то электронные устройства не целесообразно, так как они могут выйти из строя.

Просмотров: 1623

РРёРССРРРСР СРРРССРРРРРСРСРС

Синхронный электрогенератор — это синхронная машина, работающая РІ режиме генератора РІ которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор СЃ магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит РІ ней ЭДС. Р’ СЃРёРЅС…СЂРѕРЅРЅРѕРј генераторе ротор выполнен РІРёРґРµ постоянного магнита или электромагнита.

Число полюсов ротора может быть РґРІР°, четыре Рё С‚.Рґ., РЅРѕ кратно РґРІСѓРј. Р’ бытовых электростанциях используется, как правило, ротор СЃ РґРІСѓРјСЏ полюсами, чем Рё обусловлена частота вращения двигателя электростанции 3000 РѕР±/РјРёРЅ. Ротор, РїСЂРё запуске электростанции, создает слабое магнитное поле, РЅРѕ СЃ увеличением оборотов, увеличивается Рё ЭДС РІ обмотке возбуждения. Напряжение СЃ этой обмотки через блок автоматической регулировки (AVR) поступает РЅР° ротор, контролируя выходное напряжение Р·Р° счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор Рё снижает напряжение, Р° РїСЂРё подключении емкостной нагрузки РїСЂРѕРёСЃС…РѕРґРёС‚ подмагничивание генератора Рё повышение напряжения. Это называется «СЂРµР°РєС†РёРµР№ СЏРєРѕСЂСЏ».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока РІ его обмотке, что Рё обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, Р° недостатком — возможность перегрузки РїРѕ току, так как РїСЂРё завышенной нагрузке, регулятор может чрезмерно повысить ток РІ обмотке ротора. Еще Рє недостаткам СЃРёРЅС…СЂРѕРЅРЅРѕРіРѕ генератора можно отнести наличие щеточного узла, который рано или РїРѕР·РґРЅРѕ придется обслуживать. Благодаря такому СЃРїРѕСЃРѕР±Сѓ регулировки, РІРЅРµ зависимости РѕС‚ изменения тока нагрузки Рё оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно В±1%.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

«Звезда»

15723bc4bf8f2e386016055d1015b9f8.png

Соединение «звездой» предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется «нулем». При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки — нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство .

Наиболее распространена 4 проводная схема — соединение «звездой» с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе — включена активная нагрузка, а на другой — емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

«Треугольник»

6e16c78456b820ffd7123161be6455ee.jpg

Соединение «треугольником» — это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец — с началом третьей, а конец последней — с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.

Основное предназначение

Генераторы широко используются для производства электроэнергии и представляют собой огромные машины, вырабатывающие ток высокой мощности. Однако не все разновидности имеют такие габариты. Устройства, применяемые в автотранспорте, используются в качестве источников U. Это очень удобно, так как ходовая часть транспорта совершает механические движения и глупо не воспользоваться этим видом энергии для вращения ЭГ.

Генераторы трёхфазного типа переменного тока применяются вместе с мостовым выпрямителем и используются для зарядки аккумулятора. Кроме того, они используются для питания электропотребителей, например, системы зажигания, световой сигнализации и освещения, бортового компьютера и так далее. Подключается устройство к регулятору U, благодаря которому величина U остается постоянной. В авто применяются устройства переменного тока, так как они имеют меньшие размеры относительно своих собратьев — ЭГ постоянного U.

e134924cfff80731207c58dab51e5928.jpg

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию. Такие приборы применяют как временные, а также постоянные источники питания. Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения. Всего этого можно добиться, используя инверторный генератор, принцип работы которого основан на постоянстве и проходит по такой схеме:

  1. Выработка высокочастотного переменного тока.
  2. Благодаря выпрямителю преобразуется полученный ток в постоянный.
  3. Затем образуется накопление тока в аккумуляторах и стабилизируется колебания электроволн.
  4. При помощи инвертора постоянная энергия меняется на переменный ток нужного напряжения и частоты, а затем поступает к пользователю.

Устройство генератора переменного тока

74b5466879b5a659e9e7bdcaa59d03bd.png

Схематическое устройство однофазного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором.

c0af81df3a1f5e0732b7add0d0a14af9.jpg

Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники.

cfdd4abdf1457819cc45325ad0cbe3f8.gif

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.

По конструкции можно выделить:

  • генераторы с неподвижными магнитными полюсами и вращающимся якорем;
  • генераторы с вращающимися магнитными полюсами и неподвижным статором.

Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.

Подвижная часть генератора называется ротор, а неподвижная — статор.

Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.

Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.

На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.

По способу возбуждения генераторы переменного тока делятся на:

  • генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением).
  • генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя), сидящего на одном валу с обслуживаемым им генератором.
  • генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением). См также бесщёточный синхронный генератор.
  • генераторы с возбуждением от постоянных магнитов.

Конструктивно можно выделить:

  • генераторы с явно выраженными полюсами;
  • генераторы с неявно выраженными полюсами.

По количеству фаз можно выделить:

  • Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель.
  • Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель.
  • Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель.

По соединению фазных обмоток трёхфазного генератора:

  • шестипроводная система Тесла (практического значения не имеет);
  • соединение «звездой»;
  • соединение «треугольником»;
  • соединение «Славянка», сочетающее шесть обмоток в виде одной «звезды» и одного «треугольника» на одном статоре.

Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.

Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».

155c321bbf1939283dc524b7ec345cc8.png
К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.

К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).

Частота переменного тока, вырабатываемого генератором

Данные генераторы являются синхронными, то есть угловая скорость (число оборотов) вращающегося магнитного поля линейно зависит от угловой скорости (числу оборотов) ротора генератора и асинхронными, в которых имеется скольжение, то есть, отставание магнитного поля статора от угловой скорости ротора. Ввиду некоторой громоздкости регулирования асинхронные генераторы получили небольшое распространение.

Если ротор генератора двухполюсный, то за один его полный оборот индуктированная электродвижущая сила совершит полный цикл своих изменений.

Следовательно, частота электродвижущей силы синхронного генератора будет: f=n60{\displaystyle f={\frac {n}{60}}},

где

f{\displaystyle f} — частота в герцах;

n{\displaystyle n} — число оборотов ротора в минуту.

Если генератор имеет число пар полюсов p{\displaystyle p}, то соответственно этому частота электродвижущей силы такого генератора будет

в p{\displaystyle p} раз больше частоты электродвижущей силы двухполюсного генератора: f=pn60{\displaystyle f=p{\frac {n}{60}}}.

Частота переменного тока в электрических сетях должна строго соблюдаться, в России и других странах она составляет 50 периодов в секунду (герц). В ряде стран, например в США, Канаде, Японии, в электрическую сеть подаётся переменный ток с частотой 60 герц. Переменный ток с частотой 400 герц применяется в бортовой сети самолётов.

В таблице показана зависимость частоты генерированного переменного тока от количества магнитных полюсов и числа оборотов генератора

Данный фактор следует учитывать при конструировании генераторов.

Число полюсов Число оборотов ротора для частоты 50 герц,в 1 минуту Число оборотов ротора для частоты 60 герц,в 1 минуту Число оборотов ротора для частоты 400 герц,в 1 минуту
2 3 000 3 600 24 000
4 1 500 1 800 12 000
6 1 000 1 200 8 000
8 750 900 6 000
10 600 720 4 800
12 500 600 4 000
14 428,6 514,3 3 429
16 375 450 3 000
18 333,3 400 2 667
20 300 360 2 400
40 150 180 1 200

Например, паровая турбина наиболее оптимально работает при 3000 оборотов в минуту, число полюсов генератора равняется двум.

Например, для дизельного двигателя, применяемого на дизельных электростанциях, наиболее оптимальный режим работы 750 оборотов в минуту, тогда генератор должен иметь 8 полюсов.

Например, массивные и тихоходные гидравлические турбины на крупных вращаются со скоростью 150 оборотов в минуту, тогда генератор должен иметь 40 полюсов.

Данные примеры приведены для частоты переменного тока 50 герц.

Принцип работы генератора переменного тока

Особенностью принципа действия генераторов ПТ, является превращение механической энергии в электроэнергию в процессе вращения проволочного катушечного элемента в условиях созданного магнитного поля.

Асинхронные генераторы

Отличием асинхронного генераторного устройства ПТ является разница в частоте вращения ЭДС ω и роторной части ωr, выражаемая коэффициентом и носящая название скольжение:

S = (ω — ωr)/ ω

72e943bed07af866991248c45f96d191.jpg

Двигатель асинхронный трехфазный

В условиях рабочего режима происходит торможение якорной части в магнитном поле, при этом асинхронные двигатели способны функционировать в качестве генератора при ωr >ω, изменении направленности тока и обратной передаче энергии в электросеть. В таких условиях отмечается торможение электромагнитного момента.

Асинхронные электротехнические машины востребованы при предъявлении не слишком высоких требований к основным параметрам устройства.

Синхронные генераторы

Характеристики синхронного устройства предполагают наличие равенства между частотными параметрами F в ЭДС-статоре и частотой роторных оборотов:

ω = 60 × F / Р,

где Р, является общим количеством полюсных пар на статорной обмотке.

e4f953b2269905520ea8618efc2072d1.jpg

Системы возбуждения синхронных генераторов

Стандартными синхронными генераторами производится напряжение, имеющее синусоидальные характеристики, а подсоединение к выводам потребителей сопровождается протеканием сквозь электрическую цепь одно-, или трехфазного тока.

Стандартные синхронные генераторы являются предпочтительными в условиях наличия перегрузок пускового типа.

Автомобильные электротехнические машины

Генераторы автомобиля не имеют отличий от стандартных устройств, вырабатывающих в процессе работы электрический ПТ с последующим выпрямлением. Конструкция представлена электромагнитным ротором, вращающимся в паре подшипников с наличием привода через шкив.

8cffb09598ad6cb036c3fe214ca87aaa.jpg

Устройство автомобильного генератора

Одинарная обмотка характеризуется образованием постоянных токовых величин посредством пары медных колец и графитовых щеточных элементов. Электронным реле регулируется наличие стабильного напряжения на уровне 12 В, вне зависимости от особенностей вращения.

При повышении оборотов движка происходит снижение показателей токового возбуждения, благодаря чему поддерживается постоянство напряжения на выходе.

Особенности функционирования

Такая сила проявляется под воздействием изменений интенсивности магнитных полей.

Величина электродвижущей силы всегда прямо пропорциональна скорости изменений в потоках магнитных волн.

Прохождение обмоточных половин у противоположных полюсов вызывает внутри цепи токовое движение в одном направлении от минимальных показателей до наивысших значений и обратно, а изменение положения обмоток относительно полюсов провоцирует возвратное токовое течение с стабильной аналогичной закономерностью.

Простейшие генераторы ПТ представлены проволочной рамкой, которая вращается между разными полюсами внутри неподвижно зафиксированного магнита. Специфика принципа действия современных альтернаторов широко применяется при необходимости поддерживать стабильность электрического снабжения, а также такая техника востребована на объектах, где отсутствует возможность использования централизованных электросетей.

Теория генератора переменного тока

 
В прямоугольном контуре вращается постоянный магнит.

Принцип действия генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле. Или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле.

Допустим, что однородное магнитное поле, создаваемое постоянным магнитом, вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью ω{\displaystyle \omega }
 
. Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.

В каждой из активных сторон контура индуктируется электродвижущая сила, величина которой определяется по формуле:

e1=Blvsin⁡ωt{\displaystyle e_{1}=Blv\sin \omega t}
 
и e2=Blvsin⁡(ωt+{\displaystyle e_{2}=Blv\sin(\omega t+}
 
π{\displaystyle \pi }
 
)=−Blvsin⁡ωt{\displaystyle )=-Blv\sin \omega t}
 
,

где

e1{\displaystyle e_{1}}
 
и e2{\displaystyle e_{2}}
 
 — мгновенные значения электродвижущих сил, индуктированных в активных сторонах контура, в вольтах;

B{\displaystyle B}
 
 — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);

l{\displaystyle l}
 
 — длина каждой из активных сторон контура в метрах;

v{\displaystyle v}
 
 — линейная скорость, с которой вращаются активные стороны контура, в метрах в секунду;

t{\displaystyle t}
 
 — время в секундах;

ωt{\displaystyle \omega t}
 
и ωt+{\displaystyle \omega t+}
 
π{\displaystyle \pi }
 
 — углы, под которыми магнитные линии пересекают активные стороны контура.

Так как электродвижущие силы, индуктированные в активных сторонах контура, действуют согласно друг с другом, то результирующая электродвижущая сила, индуктируемая в контуре,

будет равна e=2Blvsin⁡ωt{\displaystyle e=2Blv\sin \omega t}
 
, то есть индуктированная электродвижущая сила в контуре изменяется по синусоидальному закону.

Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нём индуктируется синусоидальная электродвижущая сила.

Можно преобразовать формулу e=2Blvsin⁡ωt{\displaystyle e=2Blv\sin \omega t}
 
, выразив её через максимальный магнитный поток Φm{\displaystyle \Phi _{m}}
 
, пронизывающий контур.

Относительная линейная скорость v{\displaystyle v}
 
активных сторон равна произведению радиуса вращения α2{\displaystyle {\frac {\alpha }{2}}}
 
на угловую скорость ω{\displaystyle \omega }
 
, то есть v=α2ω{\displaystyle v={\frac {\alpha }{2}}\omega }
 
.

Тогда получим e=2Blα2ωsin⁡ωt{\displaystyle e=2Bl{\frac {\alpha }{2}}\omega \sin \omega t}
 
,

где

ωΦm{\displaystyle \omega \Phi _{m}}
 
 — амплитуда синусоидальной электродвижущей силы;

ωt{\displaystyle \omega t}
 
 — фаза синусоидальной электродвижущей силы;

ω{\displaystyle \omega }
 
 — синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре.

С учётом того, что контур состоит из многих витков провода, электродвижущая сила пропорциональна количеству витков w{\displaystyle w}
 
и формула будет выглядеть так: e=w2Blα2ωsin⁡ωt{\displaystyle e=w2Bl{\frac {\alpha }{2}}\omega \sin \omega t}
 
.

Если ввести в формулу максимальный магнитный поток, тогда e=wΦmsin⁡ωt{\displaystyle e=w\Phi _{m}\sin \omega t}
 
.

Автомобильный генератор

d4944667efc0e6534c06c0de490daeed.jpg

Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор – током.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here