Домой Электрика Принцип работы и изготовление частотного преобразователя

Принцип работы и изготовление частотного преобразователя

150
0

Рекомендации по обслуживанию оборудования

Чтобы собранный своими руками частотный преобразователь смог успешно выполнять свои функции на протяжении длительного времени, владелец должен выполнять следующие рекомендации:

  1. Следить за состоянием внутренних элементов, не допуская скопления на них пыли. При необходимости используют небольшой компрессор, поскольку пылесосу может быть не под силу удалить пыль, лежащую плотным слоем.
  2. Проверять работоспособность узлов и менять их при необходимости. Нормальным для электролитических конденсаторов считается срок службы длительностью 5 лет, для предохранителей – 10 лет. Вентиляторы охлаждения следует менять уже по прошествии 2-3 лет эксплуатации. Внутренние же шлейфы допускается использовать не более 6 лет.
  3. Необходимо следить за температурой внутренних механизмов, а также напряжением на шине постоянного тока. В случае роста температуры возникает опасность засыхания термопроводящей пасты, что может закончиться выходом из строя конденсаторов. Необходимо взять за правило наносить не реже как минимум каждые три года новый слой пасты на силовые компоненты привода.
  4. Необходимо в точности соблюдать условия эксплуатации. Оптимальным считается температурный режим окружающей среды на уровне до + 40 градусов. Крайне негативное влияние на работу элементов оказывают повышенная влажность и запыленность воздуха.

Как подключить инвертор треугольником и звездой

Когда мы купили инвертор по недорогой цене, то возникает необходимость: подключение его к электромотору самому без специалистов. Сначала надо установить для безопасности автоматический выключатель для обесточивания. Если возникнет короткое замыкание на фазах, то отключится вся система.

к мотору можно звездой или треугольником.

36d56c16c6eed7bb8616cdf7295d01ef.png

Когда привод регулирования с одной фазой, то контакты электромотора присоединяют треугольником. Тогда мощность не потеряется. Мощность этого преобразователя частоты будет не более 3 кВт.

Инверторы с тремя фазами технически наиболее современны. Они питаются от заводских трехфазных сетей, подключаются звездой.

Для ограничения тока пуска и уменьшения момента пуска при пуске электромотора свыше 5 кВт можно использовать способ включения треугольник и звезда.

При включении статора применяется схема звезды, а если обороты двигателя нормальные, то переходят на вариант треугольника. Но это используется при существовании возможности соединения по двум схемам.

Отмечаем, что в варианте звезда-треугольник большие перепады тока будут всегда. При переключении на вторую схему обороты двигателя сильно снизятся. Для восстановления скорости вращения надо повысить силу тока.

Большой применяемостью оказывают пользу частотники для моторов мощностью до 8 кВт.

Эксплуатация частотника

Правильный порядок эксплуатации преобразователя частоты заключается в выполнении основных операций:

  • Систематическая очистка частотного привода для электродвигателя от пыли и грязи.
  • Регулярно менять детали, срок годности которых истекает.
  • Постоянный контроль напряжения и температуры.
  • Работа устройства должна проходить при заданных условиях: не превышать допустимый уровень пыли, влажности, температуры окружающей среды.

Нежелательным является попадание прямых солнечных лучей на частотник, отсутствие достаточной вентиляции. Материалы и жидкости, которые достаточно легко воспламеняются, не должны находиться рядом с ним. В помещении регулярно должна проводиться обработка против грызунов. Место установки частотного привода для электродвигателя не должно иметь шероховатостей, позволять вибрации.

82bb6ae96c82b6ff927c2201b2d72be6.jpg

Частотники для двигателя мощностью около 3 КВт являются наиболее распространёнными ввиду компактности, относительно невысокой цены, простоты установки и обслуживания

Собирать вручную частотники для двигателей мощностью 3 КВт и больше нет смысла — они будут довольно дорогими по цене и не всегда обеспечивать необходимую точность в работе.

Для двигателей мощностью 3 КВт преобразователи частоты находят применение:

  • в системах вентиляции для контроля скорости вращения вентилятора;
  • для одновременности работы принимающего и подающего конвейеров;
  • для подачи сырья с контролем его объёма;
  • для управления несколькими насосами;
  • для контроля работы погружным насосом;
  • для регулировки скорости подачи сырья в дробилках.

Частотники для двигателей большей мощности отличаются величиной максимальной выходной частоты, наличием фильтра электромагнитной совместимости (ЕМС), видом режима управления.

Например, у частотного привода для электродвигателя мощностью 15 КВт максимальная выходная частота меньше, нежели у преобразователя для двигателя мощностью 3 КВт. ЕМС фильтр для такого двигателя не предусмотрен. Режим управления только скалярный.

Традиционные решения для управления электродвигателями

Современная прецизионная система управления электродвигателем постоянного тока включает в себя микроконтроллер для обработки данных и блок управления питанием обмоток двигателя, часто называемый драйвером. В состав драйвера входит логическая схема для преобразования кодированных посылок в цифровые управляющие сигналы, из которых в блоке Gate Driver формируются аналоговые сигналы для управления силовыми ключами на основе полевых транзисторов (FET). FET могут входить в состав драйвера или размещаться в отдельном блоке. Кроме того, в состав драйвера входят схемы защиты силовых цепей и цепи обратной связи для контроля работы двигателя.

На рисунке 11 представлены варианты блок-схем для интегрированного и предварительного драйверов. Каждое из решений имеет свои преимущества и особенности. Предварительный драйвер (Pre-Driver) имеет значительно облеченный температурный режим, позволяет выбирать внешние силовые ключи в соответствии с мощностью подключаемого двигателя. Полнофункциональный интегрированный драйвер позволяет создавать более компактные системы управления, минимизирует внешние соединения, но значительно усложняет обеспечение необходимого температурного режима.

63f6aa38e606a989a98d4c6946640d82.jpg

Рис. 11. Блок-схемы систем управления двигателем

Так, у интегрированного драйвера TI DRV8312 максимальная рабочая температура отдельных элементов на плате может достигать 193°С, а у предварительного драйвера DRV8301 этот показатель не превышает 37°С.

f6ed3fae5318eb8b0319bf3c1d063741.jpg

Рис. 12. Смена направления вращения коллекторного двигателя

Одной из наиболее распространенных схем для коммутации обмоток двигателей является мост типа “H”. Название схемы связано с конфигурацией подключения, которая похожа на букву “H”. Эта электронная схема позволяет легко изменять направление тока в нагрузке и, соответственно, направление вращения ротора. Напряжение, прикладываемое к обмоткам через транзисторы моста, может быть как постоянным, так и модулированным с помощью ШИМ. H-мост предназначен, в первую очередь, для смены полярности питания двигателя – реверса (рисунок 12), но также позволяет тормозить вращение, коротко замыкая выводы обмоток (рисунок 13).

Рис. 13. Режимы вращения, быстрого и медленного торможенияс

Важнейшей характеристикой силовых элементов моста, в качестве которых сегодня часто используют полевые транзисторы с изолированным затвором, является величина сопротивления открытого канала между истоком и стоком транзистора – RDSON. Значение RDSON во многом определяет тепловые характеристики блока и энергетические потери. С увеличением температуры RDSON также растет, а ток и напряжение на обмотках уменьшаются.

Использование управляющих сигналов с ШИМ позволяет уменьшить пульсации крутящего момента и обеспечить более плавное вращение ротора двигателя. В идеале частота ШИМ должна быть выше 20 кГц, чтобы избежать акустического шума. Но с увеличением частоты растут потери на транзисторах моста в процессе коммутации.

Из-за индуктивных свойств нагрузки в виде обмоток форма тока в ней не соответствует форме подаваемого напряжения ШИМ. После подачи импульса напряжения ток нарастает постепенно,а в паузах ток плавно затухает из-за возникновения в обмотках противо-ЭДС. Наклон кривой на графике тока, амплитуда и частота пульсаций влияют на рабочие характеристики двигателя (пульсации крутящего момента, шум, мощность и так далее).

Для ускоренного затухания в обмотках электродвигателей возбуждаемого эффектом противо-ЭДС тока используют диоды в обратном включении, шунтирующие переходы «сток-исток» транзисторов, либо закорачивают обмотки через переходы «сток-исток» двух транзисторов, одновременно включенных в разных плечах моста. На рисунке 13 представлены три состояния моста: рабочее, быстрого торможения (Fast Decay) и медленного торможения (Slow Decay).

А наиболее эффективным считается комбинированный режим (Mixed Decay), при котором в паузе между рабочими импульсами сначала работают диоды, шунтирующие сток-исток транзисторов, а затем включаются транзисторы в нижних плечах моста.

Для схемы Имитатор электронного прерывателя

Имитатор предназначен для проверки электронных коммутаторов автомобильной системы зажигания осциллографическим методом

Для проверки коммутатора на его вход надобно подавать прямоугольные импульсы со скважностью приблизительно трех и частотой повторения 33 или 100 Гц.
Это соответствует вращению коленчатого вала четырехцилиндрового двигателя с частотой 500 и 1500 об/мин

В зависимости от частоты вращения вала скважность импульсов на выходе коммутатора должна изменяться.Многие радиолюбители обзавелись осциллографами, но не у всех имеются необходимые генераторы.
В предлагаемом приборе прямоугольные импульсы генерируются мультивибратором на транзисторах VT1 и VT2, которые поступают на ключ — транзистор VT3.
Коллектор VT3 имитатора соединяется с клеммой 7Г коммутатора.
Вместо катушки зажигания в качестве нагрузки можно подключить автомобильную лампу А12-45+40 (EL1) или близкую ей по мощности.
Частота генератора задается переключателем SA1.
Выявлять неисправности в коммутаторе можно, сравнивая осциллограммы напряжений в контрольных точках схемы «закапризничавшего» коммутатора с исправным.
С помощью кнопки SB1 проверяется выключение тока через катушку зажигания при остановке двигателя.
При нажатой кнопке лампа через несколько секунд должна погаснуть.П.СЕВАСТЬЯНОВ, г.Ташкент, Узбекистан….

Типы электродвигателей, способы управления и возникающие сложности

Впервые созданный в 1834 году русским ученым Якоби преобразователь электрической энергии во вращательное движение получил название электродвигатель. С тех пор он был серьезно усовершенствован – появилось множество новых вариантов, но использованные при его создании принципы электромагнетизма по-прежнему являются основой всех модификаций современных электродвигателей.

Проводник с проходящим по нему током (рисунок 1) создает вокруг себя магнитное поле, интенсивность (магнитная индукция) которого пропорциональна количеству витков, в случае использования катушки (N), и величине проходящего по ней тока (I), где, В – вектор магнитной индукции, К – магнитная постоянная, N – число витков, I – сила тока.

d05e41ba0a0545df1c962493bc7766b0.jpg

Рис. 1. Электромагнетизм в основе работы электродвигателя

Изменение направления тока влияет и на направление магнитного поля проводника.

При этом на помещенный во внешнее магнитное поле проводник с током действует сила Лоренца, вызывающая его вращательное перемещение. Направление вращения легко определяется с помощью известного правила правой руки для проводника с током в магнитном поле (рисунок 2). Сила (F), действующая на проводник в магнитном поле, равна произведению силы тока (I) в проводнике на вектор магнитной индукции поля (B) и длину проводника (L). F = LIB.

Рис. 2. Перемещение проводника с током в магнитном поле (Сила Лоренца)

Устройство двигателя

Для разработки контроллера необходимо разобраться с принципом работы самого электродвигателя.

50b83de2f28a6abf188ee8b77f51c43e.png

Электродвигатель состоит из фазных обмоток, магнитов и датчиков Холла, отслеживающих положение вала двигателя.

Конструктивно электродвигатели делятся на два типа: инраннеры и аутраннеры.

086b9213c9d73e1522a9905085a8faa0.png

У инраннеров магнитные пластины крепятся на вал, а обмотки располагаются на барабане (статоре), в этом случае в движение приводится вал. В случае аутраннера всё наоборот: на валу — фазные обмотки, а в барабане — магнитные пластины. Это приводит в движение барабан.

353f4d354885540cb25837ebd344b75f.jpg

Так как у велосипеда колесо крепится валом на раму, то здесь применителен тип аутраннера.

3e98c0b2efb3654ea6e61d1aea13096d.png

На этой картинке условно представлены три фазы с обмотками, соединёнными между собой. В реальности обмоток намного больше, они располагаются равномерно с чередованием по фазам по окружности двигателя. Чем больше обмоток — тем плавнее, чётче, эластичнее работает двигатель.

В двигатель устанавливаются три датчика Холла. Датчики реагируют на магнитное поле, тем самым определяя положение ротора относительно статора двигателя. Устанавливаются с интервалами в 60 или 120 электрических градусов. Эти градусы относятся к электрическому фазному обороту двигателя. Необходимо учитывать, что чем больше в двигателе обмоток на каждую фазу, тем больше происходит электрических оборотов за один физический оборот мотор-колеса.

cbcd2192791ab60cb798d03cd501c217.png

Обмотки трёх фаз в большинстве случаев соединяются между собой по двум схемам: звезда и треугольник. В первом случае ток проходит от одной из фаз к другой, во втором — по всем трём фазам в разной степени. Иногда эти две схемы подключения комбинируют в одном двигателе, например в электромобилях. При старте и наборе скорости идёт соединение фаз по звезде: она даёт больший момент при относительно низких оборотах; далее, после набора скорости, происходит переключение на треугольник, в результате количество оборотов увеличивается, когда уже не нужен большой крутящий момент. По сути, получается условно автоматическая коробка передач электродвигателя.

Назначение и принцип работы инвертора

b8da1049782a3371d8ff9b7af304d135.jpg Инвертор управляет скоростью вращения асинхронных электродвигателей, т. е. двигателей, преобразующих энергию электрическую в механическую. Полученное вращение приводными устройствами трансформируется в другой вид движения. Это очень удобно и благодаря этому асинхронные электродвигатели приобрели большую популярность во всех областях человеческой жизни.

Важно отметить, что скорость вращения могут регулировать и другие устройства, но все они имеют множество недостатков:

  • сложность в использовании;
  • высокую цену;
  • низкое качество работы;
  • недостаточный диапазон регулирования.

Частотник для трехфазного электродвигателя помогает решить эти проблемы. Многим известно, что использование частотных преобразователей для регулировки скорости вращения является самым эффективным методом. Это устройство обеспечивает плавный пуск и остановку, а также осуществляет контроль всех процессов, которые происходят в двигателе. Риск возникновения аварийных ситуаций, при использовании преобразователя частоты, крайне незначителен.

6320f3a9a84e562e3b519afe68ee3fb8.jpg

Для обеспечения плавной регулировки и быстродействия разработана специальная схема частотного преобразователя. Его использование в значительной мере увеличивает время непрерывной работы трехфазного двигателя и экономит электроэнергию. Преобразователь позволяет довести КПД до 98%. Это достигается увеличением частоты коммутации. Механические регуляторы на такое не способны.

Понятие о принципе работы частотника

В последнее время на производстве стали широко использоваться высокочастотники, у многих неопытных новичков, встречающих их на практике, часто возникает вопрос, что такое частотный преобразователь и для чего он нужен. Достоинствами частотного привода для электродвигателя являются:

  • снижение электропотребления двигателем;
  • улучшение показателей работы: плавность запуска и регулировки скорости вращения;
  • исключение возможных перегрузок.

Плавность пуска обеспечивается преобразователем благодаря снижению с его помощью пускового тока, который без частотника превышает номинальный ток в 5–7 раз.

Основными частями в устройстве преобразователя являются инвертор и конденсаторы. Инвертор обычно выполнен из диодных мостов. Его задача — выпрямить напряжение на входе, которое может принимать значение 220В или 380В в зависимости от количества фаз, но сохранить при этом пульсации. Затем конденсаторы выпрямленное напряжение сглаживают и фильтруют.

Потом постоянный ток отправляется на микросхемы и выходные мостовые IGBT-ключи. Обычно мостовой IGBT-ключ — это шесть транзисторов, соединённых по мостовой схеме. Защиту от пробоя напряжения обратной полярности осуществляют диоды. В более ранних схемах вместо транзисторов были использованы тиристоры, значительными недостатками которых были некоторая замедленность в работе и помехи.

Благодаря этим устройствам возникает широтно-импульсная последовательность с необходимой частотой. На выходе частотника импульсы напряжения имеют прямоугольный вид. А после того как они проходят через обмотку статора, вследствие её индуктивности, принимают синусоидальный вид.

Чтобы понять, зачем нужен инвертор, необходимо уяснить, что ток бывает постоянным и переменным. И если преобразователи частоты используются при работе с переменным током, то для управления электромотором постоянного тока необходим электропривод постоянного тока. Он называется инвертором и его назначением в схеме является контроль тока возбуждения. И он также независимо от изменений нагрузки может поддерживать скорость вращения ротора в требуемых пределах и осуществлять его торможение.

Советы по выбору частотников

При выборе частотника наиболее низкая стоимость определена набором минимальных функций. Рост стоимости пропорционален их увеличению.

Первоначально преобразователи классифицируют по мощности. Не менее важными параметрами являются перегрузочная способность и тип исполнения.

Мощность частотника должна быть не меньше максимальной мощности установки. Для оперативного ремонта или замены в случае поломки частотного привода для электромотора желательно, чтобы сервис-центр был расположен в непосредственной близости.

При выборе преобразователя немаловажным фактором является его напряжение. Если подобрать частотник определённого напряжения, а в сети оно окажется более низким, то он будет отключаться. Если же напряжение сети будет длительно допускать допустимое напряжение, то это приведёт к его повреждению и невозможной дальнейшей работе. С учётом этих рисков нужно выбирать частотники с большим интервалом допустимого напряжения.

Существует два типа управления преобразователей: векторное и скалярное.

При скалярном управлении удерживается постоянство между значением напряжения и частоты на выходе. Это наиболее простой тип частотников, и, вследствие этого, более дешёвый.

При векторном управлении из-за снижения статической ошибки управление осуществляется более точно. Но и стоимость асинхронного преобразователя частоты с этим видом управления более высока в сравнении со скалярным управлением.

Зона регулирования частоты тока должна быть в необходимых пределах. Для диапазонов с регулировкой по частоте более, нежели в 10 раз лучше выбрать векторное управление.

Количество вводов должно быть оптимальным, потому как при слишком большой их численности цена прибора для изменения частоты будет неоправданно завышена, а также могут возникнуть некоторые сложности при его настройке.

Необходимо учесть перегрузочные способности частотника по току и мощности. Ток частотника должен быть чуть больше, нежели номинальный ток двигателя. В случае возникновения ударных нагрузок необходим запас по пиковому току, который должен быть не менее 10% от ударного тока.

Принцип работы и схема подключения частотных преобразователей для асинхронных электродвигателей ProElectrika.com

Принцип управления частотой вращения электрического привода с двигателем постоянного тока довольно прост как по своей сути – изменением величины подводимого напряжения, как и по решению этой задачи – регуляторы напряжения постоянного тока довольно просты в проектировании и производстве. Но в настоящее время основная масса приводов в различных тех-процессах выполняется с применением асинхронных электродвигателей переменного тока.

44828818102d7646beab7a1d55985f44.jpg

Для осуществления возможности регулировать скорость вращения таких двигателей и были разработаны частотные инверторные преобразователи для асинхронных двигателей, или попросту “частотники”. Область применения этих приборов весьма обширна – в станках и электроприводах промышленного назначения, вытяжных вентиляторах, конвейерах и т.п.

Принцип работы частотного преобразователя

22d8296f741c555ea284044952dca6ac.jpg

В основу работы прибора заложено правило вычисления угловой скорости вращения вала электродвигателя, в которое входит такой параметр, как частота питающей сети. И поэтому, если изменять частоту питания обмоток, будет изменяться и скорость вращения ротора двигателя в прямой зависимости. Но при этом мощность аппарата будет падать. Для того, чтобы сохранить КПД устройства на неизменном уровне, вместе с частотой питания нужно также изменять и величину подаваемого на обмотки напряжения.

От метода, при помощи которого решается задача одновременного регулирования частоты и напряжения на выходе преобразователя, эти приборы и получили свое второе название – “инверторы”. В устройстве происходит инвертирование мощными электронными элементами входного переменного напряжения в постоянное, с регулируемой величиной напряжения и частотой импульсов на выходе. Управление выходным сигналом осуществляется при помощи широтно-импульсного регулирования выходным каскадом на полупроводниковых элементах. Таким образом, на электродвигатель по каждой из фаз поступают пачки импульсов изменяемой частоты и напряжения.

Маркировка и схема подключения к электросети и нагрузке

Частотные инверторы любой фирмы обязательно маркируются табличками с указанием основных характеристик:

Подключение прибора к электрической сети может производиться по схеме, изображенной на рисунке

66d6e9cd6bf92f8898341384d3429c18.gif

К питающей трехфазной сети подключение производится через автоматический выключатель, рассчитанный на ток потребления нагрузки, и магнитный пускатель. Включение в сеть производится через клеммы RST, подсоединение электродвигателя – к клеммам UVW. Имеется также возможность дистанционного управления работой при помощи линии связи с компъютером.

Основная масса выпускаемых промышленностью частотников предназначена для работы в трехфазных сетях переменного тока, однако существуют и частотные преобразователи для однофазных двигателей.

Настройка и управление

9bee835534d8f39e4a6e44eba5c4e1c9.jpgОписание возможностей и настройку основных параметров покажем на примере распространенного инверторного  преобразователя Mitsubishi D700.

На лицевой панели прибора находится кнопочная панель управления с цифровым дисплеем, позволяющие производить соответствующие настройки.

Ввод данных по основным параметрам работы и защиты производится путем входа в режим программирования через кнопку PU/EXT, затем кнопкой SET выбирается необходимый параметр и редактируется его значение.

Узнать больше об управлении частотным преобразователем Mitsubishi можно из инструкции на инвертор (СКАЧАТЬ) с. В ней также приведены схемы подключения и расшифровка кодов ошибок, выводимых на экран в случае срабатывания защиты преобразователя.

Инструкции по установке, подключению и эксплуатации частотных преобразователей:

Пример программирования инвертора Мицубиши в следующем видео:

proelectrika.com

  • Частотник своими руками схема
  • Принципиальная схема электроснабжения
  • Принципиальная схема электроснабжения
  • Однолинейная схема распределительного щита
  • Однолинейная схема распределительного щита
  • Водоснабжение загородного дома из скважины своими руками схема
  • Водоснабжение загородного дома из скважины своими руками схема
  • Управление люстрой по двум проводам схема
  • Управление люстрой по двум проводам схема
  • Вентиляция в гараже своими руками схема фото

Как выбирать

Для производителей преобразователей частоты и другого электронного оборудования основным инструментом завоевания рынка является цена. С целью её уменьшения они создают приборы с минимальным набором функций. Соответственно, чем универсальнее конкретная модель, тем выше её цена. Для нас это имеет большое значение по той причине, что для эффективной и долгой работы двигателя может потребоваться ПЧ с определенными функциями

Давайте рассмотрим основные критерии, на которые следует обращать внимание.

Управление

По способу управления частотные преобразователи делят на векторные и скалярные. Первые на сегодня встречаются гораздо чаще, однако имеют более высокую цену по сравнению со вторыми. Преимущество векторного управления заключается в высокой точности регулировки. Скалярное управление очень просто, оно может лишь удерживать соотношение выходного напряжения и частоты на заданной величине. Такой преобразователь целесообразно ставить на небольшой прибор без высокой нагрузки на двигатель, например, вентилятор.

Мощность

Безусловно, чем это значение выше, тем лучше. К слову, в данном вопросе цифры не столь важны. Обратите большее внимание на фирму-производителя – чем «родственнее» ваше оборудование друг к другу, тем более эффективно оно будет работать. Кроме того, использование нескольких преобразователей от одного бренда поддерживает принцип взаимозаменяемости и простоты обслуживания. Подумайте и наличии в вашем городе соответствующего сервисного центра.

Сетевое напряжение

В данном случае действует тот же принцип, что и в предыдущем разделе – чем шире рабочий диапазон напряжения, тем лучше для нас. Отечественные электросети, к сожалению, слабо знакомы с понятием «стандарт», поэтому лучше максимально обезопасить аппаратуру от вероятных перепадов. Падение напряжения едва ли приведет к серьезным последствиям (преобразователь, скорее всего, просто отключится), а вот большое повышение опасно – оно может привести поломке устройства в результате взрыва электролитических сетевых конденсаторов.

Диапазон частотной регулировки

В данном случае следует опираться исключительно на требования производства и конкретных устройств

Так, например, для такого оборудования, как шлифовальные машины важно значение максимальной частоты (от 1000 Гц). Стандартом нижнего предела считается соотношение 1 к 10 по отношению к верхнему

На практике чаще всего используются преобразователи с диапазоном от 10 до 100 Гц. Заметьте, что широким диапазоном регулировки обладают только модели преобразователей с векторным управлением.

Входы управления

Для передачи команд управления в преобразователях предназначены дискретные входы. С помощью них осуществляется запуск двигателя, остановка, торможение, обратное вращение и т.д. Для сигналов обратной связи, осуществляющих текущий контроль и настройку привода непосредственно во время работы, используются аналоговые входы. А цифровые используются для передачи сигналов с высокой частотой, генерируемых энкодерами (датчиками угла поворота).

Фактически, чем больше вводов, тем лучше, однако большое их количество не только делает сложной настройку прибора, но и повышает его стоимость.

Количество выходных сигналов

Дискретные выходы преобразователя необходимы для вывода сигналов, сообщающих о возникновении проблем, таких как, перегрев устройства, отклонение величины входного напряжения от нормы, авария, ошибка и т.п. Аналоговые выходы необходимы для передачи обратных связей в сложных системах. Принцип выбора тот же: ищите баланс между количеством сигналов и стоимость прибора.

Шина управления

В поиске подходящей шины управления поможет схема подключения преобразователя частоты – количество выходов и входов должно быть, как минимум, равным, но лучше купите шину с небольшим запасом – значительно облегчите себе дальнейшее усовершенствование устройства.

Перегрузочные способности

Нормой считается, если мощность частотного преобразователя выше мощности двигателя на 10-15%. Ток тоже должен быть немного выше номинала двигателя. Однако такой подбор «на глаз» рекомендуется только в случае, когда нет необходимой технической документации на двигатель. При ее наличии – тщательно ознакомьтесь с требованиями и подберите соответствующий преобразователь. Если важны ударные нагрузки, пиковый ток преобразователя должен быть больше указанного значения на 10%.

Как я сам изготовил частотный преобразователь

Я изготовил и асинхронный привод для моего товарища. Ему нужен был привод для пилорамы, мощный и хороший. Так как я любил заниматься электроникой, то сразу предложил ему такую схему:

2062937e881f3453dece7a57d11c74e0.png

Трехфазный мост на транзисторах с диодами обратной связи я использовал, которые имелись. Управление осуществил через оптодрайвер HCPL 3120 микроконтроллером PIC16F628A. У входа припаял гасящую емкость, чтобы электролиты заряжались плавно. Затем припаял шунтовое реле. Еще установил триггер защиты тока от замыкания и перегрузки. Для управления установил две кнопки и выключатель для обратного вращения.

Силовую часть я собрал на навесном монтаже.

Резисторы, соединил параллельно по 270 кОм с помощью затворных проходных конденсаторов, позади платы их напаял. Моя плата показана на внешнем виде:

76fa84148e19708d4e93feae63a90dee.jpg

Вид этой моей платы с другой стороны:

f0c943f655e8cedbf6181b7cb3dcd381.jpg

Для подключения питающего напряжения я собрал блок питания, работающий на импульсах, обратноходовой. Вот привожу схему этого блока питания:

fe9cf57e4df579fb6b41dc30bbeb2846.jpg

Как я запрограммировал микроконтроллер? Простые моргалки для меня не представляли какой-то проблемы. Получились константы в виде матрицы, над которой работал мой контроллер. Частота и напряжение были заданы этими величинами. Всю схему работы проверил на моторчике вентилятора небольшой мощности, 200 Вт. Эта моя конструкция выглядела так:

701240bad8f250fcef0d1409b2edc14e.jpg

Начальные эксперименты дали хороший результат. Затем доработал программу. Раскрутил двигатель на 4 кВт, и пошел собирать управление пилорамой.

При монтаже у нас с товарищем случайно произошло замыкание и сработала защита, проверили ее работу. Мотор на 2 кВт 1500 оборотов с легкостью пилил доски. Сейчас программа еще дорабатывается для раскрутки двигателя выше номинала. Характеристики: частота от 2 до 50 герц с шагом 1,5 герц, синхронная частота, постоянно меняется, разбег от 1500 до 3500 герц, управление скалярного типа U/F, мощность мотора до 5 кВт.

Удерживаем кнопку RUN и разгоняем двигатель. Отпускаем, частота держится на уровне. Когда загорается светодиод, то привод готов к запуску.

Выпрямительный блок

cac8e81d086f9098ca456f1458ffc61c.jpg

Он может быть двух типов – одно- и трехфазным. Первый вид выпрямителя можно использовать в любой сети. Если у вас трехфазная, то достаточно произвести подключение к одной. Схема частотника для электродвигателя не обходится без выпрямительного блока. Так как имеется различие по числу фаз, значит, необходимо использовать определенное число полупроводниковых диодов. Если речь идет о частотных преобразователях, которые питаются от одной фазы, то требуется выпрямитель из четырех диодов. Они включаются по мостовой схеме.

Она позволяет уменьшить разницу между значением напряжения на входе и выходе. Конечно, можно использовать и однополупериодную схему, но она неэффективна, возникает большое число колебаний. Но если речь идет о трехфазном подключении, то необходимо в схеме использовать шесть полупроводников. Точно такая же схема в выпрямителе автомобильного генератора, никаких отличий нет. Единственное, что можно сюда добавить, так это еще три дополнительных диода, предназначенные для защиты от обратного напряжения.

Транзисторы и Н-мост

Но чтобы поочерёдно подавать ток на каждую из фаз и менять их полярность, необходимы транзисторы. Ещё нам нужна передача больших токов, высокая скорость переключения и чёткость открытия/закрытия затворов. В данном случае удобнее управлять затворами по напряжению, а не по току. Поэтому оптимальны полевые (MOSFET) транзисторы. Чаще всего их используют в контроллерах. Очень редко можно встретить комбинированный вариант транзисторов.

80378e7e909f808ed24295431990e76b.png

Для переключения фаз со сменой их полярностей используют классическую схему Н-моста (H-Bridge) из полевых транзисторов.

a71c4beb75d0d763a9a81c782cddf790.png

Он состоит из трёх пар транзисторов. Каждая из пар подключается к соответствующей фазе обмотки двигателя и обеспечивает подачу тока со значением (+ или –). Транзисторы, отвечающие за включение фазы с положительным значением, называют верхними ключами. С отрицательным — нижними. Для каждого шага открывается пара ключей: верхний одной фазы и нижний соседней фазы. В результате ток проходит от одной фазы к другой и приводит электродвигатель в движение.

cb17cd0a264e3af1bd4036bbf0801348.jpg

Из схемы видно, что мы не можем включить одновременно верхний и нижний ключ у одной и той же фазы: произойдёт короткое замыкание

Поэтому очень важно быстрое переключение верхних и нижних ключей, чтобы в переходных процессах не появилось замыкание. И чем качественнее и быстрее мы обеспечим переключения, тем меньше у нас будет потерь и нагрева/перегрева транзисторов H-моста

Для запуска остаётся обеспечить управление затворами ключей H-моста. Для управления H-мостом нужно:

  1. Считать показания датчиков Холла.
  2. Определить, в каком положении какую пару ключей включать.
  3. Передать сигналы на соответствующие затворы транзисторов.

Самостоятельная сборка

Несмотря на то, что покупка надежного и долговечного частотного преобразователя является приоритетным вариантом, такой прибор можно собрать своими руками. Во всемирной сети выложена не одна схема и инструкция, как это сделать. В действительности, сборка своими руками может стать отличной альтернативой в ситуации, когда преобразователь нужен для небольшого бытового устройства. Самодельное устройство справится со своими задачами не хуже покупного, а будет стоить значительно дешевле. Но попытки создания подходящего преобразователя для работы мощных асинхронных двигателей лучше оставить – здесь, как ни старайся, превзойти профессиональные приборы по эффективности и качеству не получится.

Итак, давайте подробно рассмотрим, как собрать частотный преобразователь для асинхронного двигателя своими руками

Обратите внимание, что параметры домашней однофазной электросети позволяют использовать в данном случае двигатель с мощностью не больше 1 кВт.

    1. Для работы двигателя нам необходима схема подключения обмоток «треугольник». Для этого нужно выводы обмоток соединить между собой последовательно, соблюдая принцип «вывод одной обмотки к вводу другой».

421c40bfd7a1aed6e32ccbfdf16a0ec1.jpg81c85785ca31215a2b978a3b63808c1d.jpgbf2e42a8b9a5d4fcafd0b9adcd07eb8c.jpg33704a8d792497de9b3ecfbb462ae43b.jpg

  1. Для того чтобы сконструировать преобразователь своими руками нам необходимы следующие компоненты:
    • любой микроконтроллер аналогичный AT90PWM3B;
    • драйвер трехфазного моста (аналог IR2135);
    • 6 транзисторов IRG4BC30W;
    • 6 кнопок;
    • индикатор.
  2. В конструкцию создаваемого нами прибора входят две платы, на одной из которых располагаются драйвер, блок питания, входные клеммы и транзисторы, а на второй – индикатор и микроконтроллер. Для соединения плат между собой воспользуемся гибким шлейфом.
  3. Для сборки частотного преобразователя необходимо использовать импульсный блок питания. Можно воспользоваться готовым устройством, или собрать его самостоятельно (не будем описывать данный процесс – это тема для отдельной статьи).
  4. Для контроля за работой двигателя необходимо подвести внешний управляющий ток, однако мы можем воспользоваться микросхемой IL300 с линейной развязкой.
    Изображение
  5. Транзисторы и диодный мост устанавливаются на общем радиаторе.
  6. Для дублирования управляющих кнопок используются оптроны ОС2-4.
  7. Установка трансформатора на однофазный преобразователь частот для двигателя небольшой мощности не является обязательным шагом. Можно обойтись токовым шунтом с сечением проводов 0,5 мм, и к нему подключить усилитель DA-1 (кстати, он же будет служить для измерения напряжения).
  8. В нашем случае мы собираем своими руками преобразователь для асинхронного двигателя мощность в 400 Вт, поэтому не станем устанавливать термодатчик – схема и без него достаточно сложна.
  9. По окончанию сборки необходимо изолировать кнопки с помощью пластмассовых толкателей. Управление кнопками осуществляется с помощью опторазвязки.

Обратите внимание, что при использовании длинных проводов, на них необходимо надеть помехоподавляющие кольца.

Он позволяет регулировать вращение двигателя в диапазоне частоты 1:40.

Для схемы Самодельный станок с ЧПУ New

Радиолюбительская технология — Самодельный станок с ЧПУ(Автор: Роман Ветров, vetrovroman&mаi1‚ru)ВведениеРазработанный и изготовленный самостоятельно станок с ЧПУможет осуществлять механическую обработку (сверление, фрезерование) пластмасс,текстолита. Гравировка по стали. Также можетиспользоваться как графопостроитель, можно рисовать печатные платы. =Самодельный станок с ЧПУРис.1. Самодельный станок с ЧПУ (внешний вид)Точность станка 0.0025 мм на 1 шаг, но по факту (с учетом неточности изготовления узлов станка, зазоры в узлах, в паре винт- гайка) точность составляет 0.1мм. Станок без обратной связи, т.е. положение инструмента отслеживается программно, за точность перемещения отвечают шаговые двигатели. Станок подключается к компьютеру через LPT порт, работает под Windows 98 и XP.Механическая часть=Самодельный
станок с ЧПУРис.2. Схема синтезатора частоты на к561ие15 Самодельный станок с ЧПУ (механическая часть)Корпусные части станка выполнены из винипласта б=10мм. Направляющие – круглые, шлифованные прутки. Суппорта выполнены из текстолита (с отверстиями под направляющие). Винт – шпилька с резьбой М6 (шаг t=1мм). Гайки фторопластовые (позднее были заменены на бронзовые т.к. при таких размерах убытки на трение в бронзовой гайке меньше).ЭлектрикаЭлектрику можно разделить на три части:Блок питания;Контроллер; Драйвер. =Самодельный станок с ЧПУРис.3. Самодельный станок с ЧПУ (электрическая часть) Блок питания: 12в 3А – для питания шаговых двигателей и 5в 0.3А для питания микросхем контролера.Контроллер: Разработанный контроллер может обслуживать до 32 (в моей схеме 3) шаговы…

Цикл работы

Чтобы привести в движение трёхфазный двигатель, нужно рассмотреть цикл его работы за электрический оборот. Итак, имеем три фазы — A, B, C. Каждая из фаз получает положительную и отрицательную полярности в определённый момент времени. Поочерёдно по шагам пропускается ток от «плюса» одной фазы к «минусу» другой фазы. В итоге получается шесть шагов = три фазы ? две полярности.

A+, A–, B+, B–, C+, C–

3d7ab3794673a4f8ce0b48a4dc3ca06a.jpg

Рассмотрим эти шесть шагов цикла. Предположим, что положение ротора установлено в точке первого шага, тогда с датчиков Холла мы получим код вида 101, где 1 — фаза А, 0 — фаза B, 1 — фаза С. Определив по коду положение вала, нужно подать ток на соответствующие фазы с заданными полярностями. В результате вал проворачивается, датчики считывают код нового положения вала — и т. д.

В таблице указаны коды датчиков и смена комбинаций фаз для большинства электродвигателей. Для обратного хода колеса (реверса) достаточно перевернуть знаки полярности фаз наоборот. Принцип работы двигателя довольно прост.

Цикл двигателя представлен в gif-анимации.

555d013d4466a0a24f8b0c6f982a5dde.gif

Краткое описание и назначение устройства

Текущая версия устройства трехфазного инвертора (далее инвертор) представляет собой усовершенствованный и модифицированный вариант системы управления двигателями, основанный на предыдущих подобных разработках кафедры Машин и аппаратов Хмельницкого национального университета. Внешний вид платы инвертора изображен на рисунке 1 и 2.

->  <-

 

4fb20de561bba034221b548fe595cb8a.jpg

 

Рисунок 1. Внешний вид платы трехфазного инвертора (верхний слой)

 

8e1e8dbad077af4fd075f73633e0a1f0.jpg

 

Рисунок 2. Внешний вид платы трехфазного инвертора (нижний слой)

 

Данный инвертор предназначен для осуществления управления работой электрическими двигателями, такими как:

  • Трехфазные асинхронные двигатели;
  • Однофазные асинхронные двигатели;
  • Коллекторные двигатели;
  • Трехфазные двигатели постоянного тока с датчиками и без датчиков Холла.

В зависимости от типа двигателя используется различные режимы управления, для чего предназначено соответствующие программное обеспечение. Для двигателей, содержащие одну или две фазы используется два плеча драйвера из трех – режим инверсного Н-моста. Всего возможно подключение двигателей, электрическая обмотка которых содержит от одного до трех фаз. Исключение составляют двухфазные (биполярные) шаговые двигатели, электрическая схема управления которых содержит две независимые обмотки. Управление таким двигателем предполагает наличие драйвера, который давал бы возможность осуществлять переполюсовку тока в каждой из этих обмоток.

Устройство данного инвертора представляет собой комплектующую часть для нужной конечной системы управления, которая, кроме текущей платы, должна включать в себя источник питания и систему управления с интерфейсом ввода-вывода данных. В качестве системы управления и интерфейса ввода-вывода может служить компьютер, для подключения которого на плате инвертора предусмотрен разъем интерфейса RS-232.

Возможен также работа платы инвертора в режиме демонстрации, с выполнением некоторых основных функций, например, запуск двигателя, остановка, реверс, изменение скорости. Для осуществления управления этим режимом на плате инвертора предусмотрены четыре кнопки управления.

Также к дополнительным функциям платы инвертора относятся следующие, – это возможность подключения датчиков обратной связи, например, для управления трехфазными двигателями постоянного тока с датчиками Холла, возможность подключения тахометра для контроля скорости вращения двигателя и возможность подключения охлаждающего вентилятора.

 

 

Описание конструкции и электрической части печатной платы управления

 

 

Печатная плата инвертора изготовлена в двухслойном исполнении с защитным покрытием (маской). На верхнем слое находится большинство электрических сигнальных проводников (рисунок 3) и запаяны почти все электрические компоненты (рисунок 4). На нижнем слое размещены в основном полигоны питания (рисунок 5) и запаянные силовые транзисторы для возможности удобного монтажа теплоотводящего радиатора (рисунок 6).

ca73443de8569ef13889d393ce7c02a5.jpg

Рисунок 3. Верхний слой платы инвертора (электрические проводники)

 

f193b62b5bf33e2137b66ff62dc4b566.jpg

Рисунок 4. Верхний слой платы инвертора (электрические компоненты)

 

 

391df38cdd78bff4199f97382fe728c9.jpg

Рисунок 5. Нижний слой платы инвертора (электрические проводники)

 

02e1de3461c8b0dd4a1e5b8e849a938c.jpg

Рисунок 6. Нижний слой платы инвертора (электрические компоненты)

 

Всю систему данного инвертора можно разделить на следующие основные части (узлы):

  • Узел питания;
  • Узел контроля;
  • Узел ввода-вывода;
  • Узел мониторинга:
  • Узел драйвера.

Рассмотрим кратко каждый из них. Узел питания состоит из четырех линейных стабилизаторов напряжения на 3.3В, 5.0В, 12.0В и 15.0В соответственно (Рисунок 7).

 

295ca9593c386916b5994845e5c22d9b.png

 

Рисунок 7. Узел питания инвертора

 

Стабилизатор напряжения на 3.3В используется для питания управляющего контроллера и всей логики схемы инвертора, на 5.0В – для питания датчика тока, на 12.0В – питание охлаждающего вентилятора и на 15.0В – питание для драйвера силовых ключей.

Узел контроля – это собственно программируемый контроллер (рисунок 8), выполняющий все функции ввода-вывода и управления самым драйвером двигателя. Для программирования последнего на плате предусмотрен специальный ISP разъем.

 

0162b8ca1e4da4e6b1f37e57d93a0fee.png

 

Рисунок 8. Узел контроля инвертора

 

Узел ввода-вывода включает в себя следующие элементы, такие как кнопки управления (рисунок 9), интерфейс RS232 (рисунок 10), светодиоды, логику управления вентилятором и тахометром, клеммы для подключения входных сигналов.

 

2f18958d514fd10bd43df0505385e033.png

 

Рисунок 9. Узел ввода-вывода инвертора (кнопки управления)

 

37b3e405f2d8f80e51eb4c2a3f259a7d.png

 

Рисунок 10. Узел ввода-вывода (интерфейс RS232)

 

Узел мониторинга включает в себя датчик тока (рисунок 11) и температуры (рисунок 12). Первый и второй аналогового принципа действия, считывания и преобразования в значения тока и температуры выполняет контроллер с помощью интерфейсов АЦП.

 

2b0380a0617fc6ecfa68606f57c18a4c.png

 

Рисунок 11. Узел мониторинга инвертора (датчик тока)

 

40503db3d426581e5a5cea94632a2a61.png

 

Рисунок 12. Узел мониторинга инвертора (датчик температуры)

 

Узел драйвера включает в себя всю логику управления собственно двигателем. К ней относится гальваническая развязка (рисунок 13), драйвер силовых транзисторов (рисунок 14) и сами силовые транзисторы (рисунок 15).

dbaa905625da3a251042f23cf7334ff6.png

 

Рисунок 13. Узел драйвера инвертора (гальваническая развязка)

 

48c359802dd9a465ed33a5d45f8e8554.png

 

Рисунок 14. Узел драйвера инвертора (драйвер силовых транзисторов)

 

add698df12797404785527bb0b48cde9.png

 

Рисунок 15. Узел драйвера инвертора (силовые транзисторы)

 

Для питания всей схемы инвертора нужно три независимых (гальванически развязаны ) источника питания.

Первое – питание всей логики схемы управления, не включая драйвер силовых транзисторов. Последний источник должен быть с выходным напряжением в рекомендованном диапазоне 17-20В, ток потребления схемы инвертора по текущему питанию не более 40 мА.

Второе – питание драйвера силовых транзисторов, должно быть с выходным напряжением в рекомендованном диапазоне 17-20В, ток потребления схемы инвертора по текущему питанию не более 10 мА.

Третье – питание для собственно двигателя, которым нужно управлять. Напряжение и ток, которые должны быть обеспечены текущим источником зависят от мощности двигателя. В электрической схеме инвертора заложены силовые IGBT транзисторы, обеспечивающие максимальное падение напряжения между коллектором и эмиттером – 600В, и длительный ток коллектора при комнатной температуре – 60А .

 

 

Для схемы Изготовление миниатюрной электродрели

Обычно отверстия в платах сверлят при помощи низковольтного двигателя (например, от неисправного магнитофона), на валу которого крепят сменные патроны-втулки.
Однако не у каждого есть вероятность их изготовить.
Автор использует 6-вольтовый мотор от кассетного плейера First, на валу которого крепят насадку со сверлом.
Понадобится использованный металлический стержень от шариковой ручки, предварительно очищенный.
Самый кончик пишущего узла (с шариком) откусывают бокорезами.
Сверлом, которое будет установлено, сверлят отверстие в торце пишущего узла.
После этого сверло вставляют в стержень и запаивают.
Затем металлический стержень со сверлом вставляют в «родной» пластмассовый стержень от шариковой ручки нужной длины (примерно 6…10 мм).
Далее всю эту конструкцию надевают на вал двигателя.
Наиболее подходит стержень от масляной ручки Pencil Global-21.
Отличить тот самый стержень от других позволит его характерный белый цвет.
Он имеет достаточную жесткость и внутренний диаметр примерно 1,7 мм, что позволяет довольно плотно надеть его на вал двигателя, диаметр которого равен 2 мм.
Автор использует такую мини-дрель на протяжении нескольких лет и очень ею доволен.
А.
Лиходед, г.
Запорожье…

На что обратить внимание при выборе

80dfe32b4f14123351b10f70e1f038da.jpgПроизводители делают упор на стоимость преобразователя. Поэтому многие опции доступны только у дорогих моделей. При выборе устройства следует определиться с основными требованиями для конкретного использования.

  • Управление может быть векторным или скалярным. Первое даёт возможность точной регулировки. Второе лишь поддерживает одно, заданное соотношение между частотой и напряжением на выходе и подходит только для простых приборов, вроде вентилятора.
  • Чем выше указанная мощность, тем универсальнее будет устройство — обеспечится взаимозаменяемость и упростится обслуживание оборудования.
  • Диапазон напряжения сети должен быть максимально широким, что обезопасит при перепадах его норм. Понижение не так опасно для устройства, как повышение. При последнем — вполне могут взорваться сетевые конденсаторы.
  • Частота должна полностью соответствовать потребностям производства. Нижний предел указывает на диапазон регулирования скорости привода. Если нужен более широкий, потребуется векторное управление. На практике применяются частоты от 10 до 60 Гц, реже до 100Гц.
  • Управление осуществляется через различные входы и выходы. Чем их больше, тем лучше. Но большее количество разъёмов существенно увеличивает стоимость устройства и усложняет его настройку.

Дискретные входы (выходы) используются для ввода команд управления и выхода сообщений о событиях (например, о перегреве), цифровые – для ввода сигналов цифровых датчиков (высокочастотных), аналоговые – для ввода сигналов обратной связи.

Шина управления подключаемого оборудования должна совпадать с возможностями схемы частотного преобразователя по количеству входов и выходов. Лучше иметь небольшой запас для модернизации.
Перегрузочные способности. Оптимален выбор устройства с мощностью на 15% больше мощности используемого двигателя. В любом случае нужно прочесть документацию. Производители указывают все основные параметры двигателя. Если важны пиковые нагрузки, следует выбрать преобразователь с показателем пикового тока на 10% больше указанного.

Подключение и настройка

Для подключения частотного преобразователя общая схема подключения асинхронного электродвигателя. В цепи преобразователь располагается сразу после дифференциального автомата, рассчитанного на ток, равный номиналу двигателя. При установке преобразователя в трехфазную сеть нужно использовать трехфазный автомат с общим рычагом. Это позволяет в случае возникновения перегрузки на одной из фаз разом отключить все питание. Значение срабатывания должно быть подобрано в соответствии с током одной фазы двигателя. А в ситуации, когда частотный преобразователь устанавливается в сеть с однофазным током, целесообразно использовать автомат, рассчитанный на тройное значение фазы. Так или иначе, установка прибора должна осуществляться вручную, без «врезания» в разрыв «нуля» и заземления.

Фактически настройка ПЧ заключается в выборе схемы присоединения фазных проводов к клеммам на электродвигателе, однако она чаще зависит от того, к какому типу сети они подключаются. Для трехфазных электросетей на производственных объектах двигатель подключают «звездой» — эта схема предусматривает параллельное подключение проводов обмоток. Для бытовых однофазных сетей с напряжением 220В используется схема «треугольник» (учитывайте при этом, что величина выходного тока не должна превышать номинал более чем на 50%).

Пульт управления следует расположить в любом месте, наиболее удобном для использования. Схема его подключения указывается в технической документации к частотному преобразователю. Перед монтажом и до подачи питания рычаг следует установить в выключенное положение. После переведения рычага во включенное положение должен загореться соответствующий световой индикатор. По умолчанию для запуска устройства следует нажать клавишу «RUN». Для постепенного наращивания оборотов двигателя надо медленно поворачивать рукоятку пульта. При обратном вращении следует переключить режим с помощью кнопки реверса. Теперь можно установить рукоятку в положение, устанавливающее необходимую скорость вращения

Обратите внимание, что на пультах управления некоторых частотных преобразователей вместо механической частоты вращения указывается частота питающего напряжения.

Аппаратное прерывание

И тут я понял, в чём дело: Ардуино не успевает обрабатывать показания датчиков Холла! Поэтому необходимо было использовать пины Ардуино с аппаратным прерыванием. Так как у Ардуино УНО таких пинов всего два, а под датчики нужно три пина, надо взять Ардуино Леонардо или Искра Нео, где таких пинов — четыре штуки.

6deab07143d278028f3565af00cd1c5c.png

Переписав программу под прерывания и подключив Искру Нео вместо УНО, я повторил испытания.

Колесо наконец-то заработало чётко, без вибраций, шумов, отлично стало набирать обороты без рассинхронизации. Прототип оказался жизнеспособным. Но это ещё не полноценный контроллер, поскольку в нём не было обвязки с защитами и обеспечением качественного ШИМ-сигнала.


Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

5e57c0d660c9ea32256974c95e87cd92.jpg

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Самодельный частотный преобразователь 220-380V собственной сборки

Драйверы TI для BLDC

Драйверы TI для бесколлекторных двигателей, или BLDC, могут включать интегрированный силовой мост или использовать внешние силовые транзисторы. Схема формирования 3-фазных сигналов управления также может быть внешней или встроенной.

Семейство драйверов для управления бесколлекторными электродвигателями включает модели c разным принципом управления и с различным крутящим моментом. Эти драйверы, обеспечивающие разные уровни шума при управлении BDLС, идеально подойдут для использования в промышленном оборудовании, автомобильных системах и другой технике. Чтобы гарантировать надежную эксплуатацию электродвигателей, драйверы обеспечивают всеобъемлющий набор защит от превышения тока, напряжения и температуры. На рисунке 18 представлены лишь некоторые из 3-фазных драйверов для BLDC в обширном и постоянно пополняющемся модельном ряду компании TI.

381eeef9cf98ab5fab130778da11faf8.jpg

Рис. 18. Драйверы TI для управления бесколлекторными двигателями

Для контроля текущего положения вращающегося ротора могут использоваться внешние датчики разных типов или схема управления с определением позиции ротора по величине противо-ЭДС (Back Electromotive Force, BEMF).

Управление может выполняться с помощью ШИМ, аналоговых сигналов или через стандартные цифровые интерфейсы. Наборы настраиваемых параметров для управления вращением могут храниться во внутренней энергонезависимой памяти.

На рисунке 19 представлен работающий в широком диапазоне температур 40…125°C интеллектуальный драйвер для BLDC со встроенными силовыми ключами на полевых транзисторах, с сопротивлением открытого канала лишь 250 мОм. При диапазоне рабочих напряжений 8…28 В драйвер может обеспечивать номинальный ток 2 А и пиковый ток 3 А.

801b78d3567eebcdf0383c8365946ae8.jpg

Рис. 19. Блок-схема драйвера DRV10983

Драйвер не требует внешнего датчика для контроля положения ротора, но может использовать внешний резистор для контроля потребляемой двигателем мощности. DRV10983 отличается незначительным энергопотреблением, составляющим всего 3 мА, в дежурном режиме. А в модели этот показатель доведен до уровня 180 мкА.

Встроенный интерфейс I2C обеспечивает диагностику и настройку, доступ к регистрам управления работой логической схемы и хранящимся в памяти EEPROM рабочим профилям драйвера.

Расширенный комплект защитных функций обеспечивает остановку двигателя в случае превышения тока и понижения напряжения. Предусмотрено ограничение входного напряжения. Защита по превышению тока работает без использования внешнего резистора. Методы использования защиты настраиваются через специальные регистры.

Н-мост

Составление электроэлементов соответствующим образом (по типу Н-моста) позволит управлять мотором в обе стороны. H-мост представлен на чертеже:

Где INA, INB — входные сигналы управления;

VCC — электропитание моторов, в несколько раз превышающее напряжения управляющего сигнала;

GND — общая земля.

При подаче положительного сигнала на один из входов, электродвигатель будет вращаться в ту или иную сторону. Обычно, схема драйвера кроме H-моста, дополняется защитными диодами, фильтрами, опторазвязками и другими улучшениями. Самым популярным чипом драйвером является IR2110.

Как сделать инвертор самому своими руками

Вместе с производством заводских инверторов любители делают их сами, своими руками. Здесь нет ничего сложного. Такой преобразователь частоты преобразовывает одну фазу, делает из нее три фазы. Электродвигатель с похожим частотником используют в домашних условиях, мощность его не будет теряться.

778b0ed4459d6abe99d4308a6ba3052f.png

Блок выпрямления в схеме расположен в начале. Далее идут фильтры, которые отсекают токовые переменные. Чтобы изготовить данные инверторы применяют транзисторы IGBT.

За тиристорами стоит будущее, хотя и в настоящем они уже применяются давно. Купленный частотник на биполярных транзисторах стоит дорого и мало где применяется (сервоприводы, металлорежущие станки с векторным управлением). Эти приводы как транспортеры и конвейеры, карусельные станки, станции подкачки воды, климатические системы управления — это большая часть от всего применения устройств заводов, где лучше использовать частотники для  управления электромоторами с короткозамкнутыми якорями и можно делать управление оборотами двигателя, если подать потенциал, изменяя частоту до 50 герц.

Приведем простые примеры частотных преобразователей, которые тянули мощные электродвигатели тепловозов и электричек, имеющих в своем составе много вагонов товарных платформ, большие станции с насосами напряжением 600 вольт, обеспечивающие городские районы питьевой водой. Очевидно, что данные сильные электродвигатели не подойдут на биполярных транзисторах. Поэтому применяют активные тиристоры типа GTO, GCT, IGCT и SGCT. Они преобразуют из постоянного тока токовую сеть с тремя фазами с хорошей мощностью. Однако, имеются простые схемы на тиристорах простого типа, закрывающиеся током катода обратного. Такие тиристоры не будут действовать в режиме ШИМ, их хорошо применяют в прямой регулировке электромоторов, без тока постоянного размера. Преобразователи частоты на тиристорах в застойные времена были задействованы для моторов на постоянном токе. Фирма Сименс изобрела , преобразившие промышленность до неузнаваемости.

Стоимость всех деталей самодельного инвертора существенно ниже цены заводского устройства.

Такие самодельные устройства хорошо подходят для электромоторов мощностью до 0,75 кВт.

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here