Домой Проводка Разнообразие видов дифавтоматов

Разнообразие видов дифавтоматов

95
0

Источники электрической энергии

9a98be44c55a2596579bf30c99ce5eca.jpgИзначально источниками электричества были только лишь химические гальванические элементы одноразового действия. В дальнейшем появились многоразовые аккумуляторы. Примечательно, что полярность химических источников не в состоянии меняться сама по себе. С целью получения постоянного напряжения в промышленных масштабах применяются генераторы, а иногда и солнечные батареи.

Электронная техника, в свою очередь, питается от сети переменного напряжения, а для получения постоянного используются блоки питания. До требуемых показателей переменный ток понижают с помощью трансформаторов и впоследствии выпрямляют. При этом частоту пульсаций снижают сглаживающие фильтры, стабилизаторы и регуляторы напряжения.

В современном мире распространены импульсные блоки питания. В них частота пульсаций выходного электричества сглаживается интегрирующими элементами. Они концентрируют электрическую энергию и отдают ее в нагрузку. В итоге получается требуемое постоянное напряжение.

Электрическую энергию способны конденсировать также и электролитические конденсаторы. При разряде такого конденсатора во внешней цепи возникает переменный ток. Если же он разряжается через резистор, в этом случае возникает постепенно уменьшающийся (однонаправленный) переменный ток. При использовании индукционной катушки в цепи образуется двунаправленный переменный ток. Электролитические конденсаторы могут обладать огромной емкостью, достигающей сотен микрофарад. При разряде таких конденсаторов через большое сопротивление электричество уменьшается медленнее и во внешней цепи протекает уже постоянное напряжение.

Существуют также и комбинации конденсаторов и химических источников — ионисторы. Они обладают способностью накапливать и отдавать значительное количество электричества. Характерный пример — электромобили.

Периодический переменный ток

Развёрнутая диаграмма периодического переменного тока

Периодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.

На представленной диаграмме мы видим, что через равные промежутки времени T{\displaystyle T} график тока воспроизводится полностью без каких-либо изменений.

Время T{\displaystyle T}, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.

Величина, обратная периоду, называется частотой переменного тока:

f=1T{\displaystyle f={\frac {1}{T}}}, где
f{\displaystyle f} — частота переменного тока;
T{\displaystyle T} — период переменного тока.

Если выразить время T{\displaystyle T} в секундах (sec), то будем иметь:

f=1T[1sec]{\displaystyle f={\frac {1}{T}}\left[{\frac {1}{sec}}\right]}, то есть размерность частоты переменного тока выражается в 1/с..

Частота переменного тока численно равна числу периодов в секунду.

За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz).

Герц — единица Международной системы единиц (СИ), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).

Стандарты частоты

В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока).

Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).

В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.

Число оборотов ротора n[1min]{\displaystyle n\left[{\frac {1}{min}}\right]} синхронного электродвигателя определяется по формуле:

n=60fp{\displaystyle n={\frac {60f}{p}}}, где

f{\displaystyle f} — частота переменного тока;

p{\displaystyle p} — число пар полюсов.

Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, рассчитанный на 400 герц, разовьёт 24 000 оборотов в минуту. Число оборотов ротора асинхронного электродвигателя меньше, чем ротора синхронного двигателя и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.

В технике связи применяются частоты более высокие, и в частности в  — порядка миллионов и миллиардов герц.

Сети переменного тока

fbeabe1a1b8d9a18d48896a750dc13cd.jpg

Четырёхпроводная линия электропередачи 220/380 В, такие ЛЭП распространены в районах одноэтажной застройки, в сельской местности.Два нижних провода — сеть проводного радиовещания.

57490aa46d00945b15b9bb56df8a4fec.png

Преобразование напряжения в электрических сетях

80291f8e1d52ff433599da79e659a48f.jpg

Схема разводки трёхфазной сети в многоквартирных жилых домах.

Производители электроэнергии (ГЭС, ТЭС, ТЭЦ, атомные и другие электростанции) генерируют переменный ток промышленной частоты (в России — 50 Гц), напряжением порядка 10 — 20 кВ.

Затем электрический ток поступает на трансформаторные подстанции, которые находятся рядом с электростанциями, где происходит повышение электрического напряжения.

Переменный ток высокого напряжения передаётся потребителям по линиям электропередач (ЛЭП). Повышение напряжения необходимо для того, чтобы уменьшить потери в проводах ЛЭП (см. Закон Джоуля — Ленца, при увеличении электрического напряжения уменьшается сила тока в электрической цепи, соответственно уменьшаются тепловые потери).

Самая высоковольтная в мире ЛЭП Экибастуз-Кокчетав работала под напряжением 1 миллион 150 тысяч вольт.

На другом конце линии электропередачи находится понижающая трансформаторная подстанция, где высоковольтный переменный ток понижается трансформаторами до нужного потребителю значения.

В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, однако существуют линии электропередач постоянного тока, например высоковольтная линия постоянного тока Волгоград-Донбасс, высоковольтная линия постоянного тока Экибастуз-Центр, материковая Южная Корея — остров Чеджудо и другие. Использование постоянного тока позволяет увеличить передаваемую электрическую мощность, передавать электроэнергию между энергосистемами, использующими переменный ток разной частоты, например, 50 и 60 герц, а также не синхронизировать соседние энергосистемы, как это сделано на границе Ленинградской области с Финляндией (см. вставка постоянного тока Выборг — Финляндия).

В России в электрических сетях общего назначения используется трёхфазный ток с межфазным напряжением 380 Вольт.

Качество электрической энергии — её электрическое напряжение и частота должны строго соблюдаться.

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 380 Вольт. В отдельную квартиру (или в сельский дом) подводится фазовый провод и нулевой провод, электрическое напряжение между «фазой» и «нулём» составляет 220 Вольт. Определить, где какой провод можно с помощью .

Например, в первую квартиру подводится фаза «A», во вторую квартиру — фаза «B», в третью квартиру — фаза «C» и так далее…

Генерирование переменного тока

75d7e18c253ca3e68795519cfbb78df2.jpg

Простейший генератор переменного тока: если вокруг проволочной катушки, намотанной на магнитопровод из трансформаторной стали вращать маховик с установленными в нём несколькими парами постоянных магнитов, то в катушке (условно показан один виток) будет наводиться синусоидальная ЭДС, а при подключении нагрузки в электрической цепи появится переменный ток.Применяется на транспортных средствах (мопеды, лёгкие мотоциклы, снегоходы, гидроциклы, а также на подвесных лодочных моторах), работает совместно с выпрямителем и регулятором напряжения (см. магдино).

Основная статья: Генератор переменного тока

Принцип действия генератора переменного тока основан на законе электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.


Электродвижущая сила e{\displaystyle e} генератора переменного тока определяется по формуле:

e=w2Blα2ωsin⁡ωt{\displaystyle e=w2Bl{\frac {\alpha }{2}}\omega \sin \omega t}, где

w{\displaystyle w} — количество витков;

B{\displaystyle B} — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);

l{\displaystyle l} — длина каждой из активных сторон контура в метрах;

ω{\displaystyle \omega } — угловая скорость синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре;

ωt{\displaystyle \omega t} — фаза синусоидальной электродвижущей силы.


Частота переменного тока, вырабатываемого генератором, определяется по формуле:

f=pn60{\displaystyle f=p{\frac {n}{60}}}, где

f{\displaystyle f} — частота в герцах;

n{\displaystyle n} — число оборотов ротора в минуту;

p{\displaystyle p} — число пар полюсов.


По количеству фаз генераторы переменного тока бывают:

  • трёхфазные генераторы — основной тип мощных промышленных генераторов;См. также трёхфазная система электроснабжения, трёхфазный двигатель, автомобильный генератор трёхфазного переменного тока.
  • однофазные генераторы, применяются, как правило, на маломощных бензиновых электростанциях, встроены в двигатели внутреннего сгорания мопедов, лёгких мотоциклов, снегоходов, гидроциклов, подвесные лодочные моторы;См. также конденсаторный двигатель, однофазный двигатель.
  • двухфазные генераторы, встречаются значительно реже по сравнению с однофазными и трёхфазными.См. также двухфазная электрическая сеть, двухфазный двигатель.

94d7f16397ca7e1c87b65296480a7697.gif

Модифицированная синусоида, генерируемая инвертором.

Инверторы

Постоянный ток может быть преобразован в переменный с помощью инвертора.

Следует отметить, что недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида. Для получения синусоидального тока инвертор должен иметь задающий генератор (как правило, специализированная микросхема, формирующая электрический сигнал синусоидальной формы, который затем управляет работой тиристорных или транзисторных электронных ключей.

Фазорасщепитель

Трёхфазный ток может быть получен из однофазного при помощи фазорасщепителя. Эти электрические машины применяются, в частности, на электровозах, таких как ВЛ60, .

Постоянная составляющая тока и напряжения. DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.90aca16463f0ae4b59fc0ec7bd54a489.png
В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC — величина, равная среднему значению тока за период.

AVG — аббревиатура Avguste — Среднее.

Переменная составляющая AC — периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения
.

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Как избежать некорректной работы дифзащиты при отсутствии заземления. 2 способа

При строительстве гражданских объектов в советский период не было норм, обязывающих выполнять заземление в каждой квартире. Конечная точка заземления в таких случаях — домовой электрощиток. Пользование современными электроприборами при схеме подключения без заземления — крайне опасно. Использование электрозащиты позволяет снизить риск поражения электротоком.

Без заземления электроаппарат обеспечивает отключение сети при протекании тока утечки через тело человека. При этом быстродействие защиты таково, что ток не успевает поразить организм.

Важно помнить: при наличии заземляющего проводника электроаппарат отключает линию с током утечки моментально. Без заземления отключение происходит только после прикосновения человека к неисправному электроприбору (стиральной машине, водонагревателю и т.д.)

В бытовых сетях УЗО без заземления для защиты от пожаров равноценно корректно работает, как и в случае трехпроводных линий.

Условно можно считать подключение электрозащиты без заземления, как частный случай работы устройства при обрыве заземляющего проводника, стабильно выполняя при этом свою основную функцию.

Вывод: УЗО — главный элемент защиты во всех схемах (с заземляющим проводником и без него). Обеспечивает пожаробезопасность дома и высокий уровень защиты человека от поражения электротоком.

Применение

9abf2d729e6ffd0fd230fbe92164b966.jpgИз-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов
.

Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.

Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы
.

acd0d8c42513196dea9cfbd5e427ab97.jpgПеременный применяют почти везде
, в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником. По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.

Переменный ток используется и в медицине

3933d5e638d21eae721ba79b91ff112a.jpgТак, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода
у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.

Таким образом, мы узнали, что есть два вида : постоянный и переменный
, по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (-) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.

По типу сети и току утечки

Дифференциальные автоматы по типу контролируемой электрической сети делятся на однофазные напряжением 220 В и трехфазные с линейным напряжением 380 В, соответственно, разделяются на двухполюсников для однофазных и четырехполюсников для трехфазных сетей.

В зависимости от тока утечки, возникающего в контролируемой сети, дифавтоматы, как и УЗО, подразделяются на следующие категории.

Тип АС. Дифференциальный автомат этого вида реагирует на синусоидальный переменный ток утечки, который может появиться мгновенно или нарастать постепенно. При превышении порогового значения тока отключения он срабатывает, разрывая защищаемую линию. На корпусе дифавтомата должно быть обозначение АС или символ переменного тока в рамке.

6383a025ad86ac35583895ee95a8fe6e.jpg

Тип А. Отличие устройства этой категории от первого типа состоит в том, что оно реагируют на мгновенное возникновение или постепенное увеличение переменного и постоянного (пульсирующего) тока утечки. При достижении значения уставки, дифавтомат срабатывает. На его корпусе должно быть изображение буквы А или символа синусоиды и пульсирующего тока в рамке. Различия сказываются на цене. Эти дифавтоматы значительно дороже устройств первого типа из-за необходимости дополнительного контроля, пульсирующих токов. Они имеют наибольшее распространение и рекомендуются в большинстве случаев. Это связано с большим количеством бытовой техники имеющей именно такого рода токи утечки. Некоторые производители прямо указывают на этот тип защитных приборов, для своих устройств.

Тип В. Дифавтоматы этого вида срабатывают при наличии переменного, постоянного или выпрямленного тока утечки. Независимо от того, как происходит превышение порогового значения, мгновенно или постепенно. Обычно используется на промышленных объектах. На корпусе указываются символы постоянного, переменного и пульсирующего токов в рамке, как и в УЗО (кстати, на западе из принято называть дифреле).

В европейских странах тип АС практически не применяется. В России допускается применение всех типов устройств.

Устройства защитного отключения УЗО

Принцип устройства защитного отключения основан на сравнении проходящих токов по фазе и по «нулю», в том случае если разница (утечка тока) выше значения установленного порога на УЗО, то дифференциальный автоматический выключатель срабатывает, т.е. разрывает цепь фазы, и «нуля». (В трехфазных УЗО сравниваются суммы токов фаз с «нулем»)

Немаловажно, что УЗО может сработать и при выключенном автомате (отключенной фазе), если по «нулю» будет протекать ток.
Дифференциальный автоматический выключатель подключается к электрической сети таким образом, чтобы поля, наводимые фазой и нейтралью и проходящие через сердечник устройства, были противоположной направленности, вследствие чего они компенсируют друг друга. В случае возникновения утечки величина токов, текущих по нейтрали и по фазе, становится неравной, то есть нарушается баланс компенсации, и в обмотке сердечника начинает течь ток, размер которого оценивает реле разностного тока R

При превышении определенного порога реле происходит срабатывание.
Принцип действия УЗО дифференциального типа основан на применении электромагнитного векторного сумматора тока -дифференциального трансформатора тока.
Сравнение текущих значений двух и более (в четырёхполюсных УЗО — четырёх) токов по амплитуде и фаз* наиболее эффективно, т.е. с минимальной погрешностью, осуществляется электромагнитным путём — с помощь дифференциального трансформатора тока (рис. 1).
Суммарный магнитный поток в сердечнике Фi, пропорциональный разности токов I и I в проводниках, определяющихся первичными обмотками трансформатора, наводит во вторичной обмотке трансформатора тока соответствующую ЭДС, под действием которой в цепи вторичной обмотки протекает ток I, также пропорциональный разности первичных токов.
К магнитному сердечнику трансформатора тока электромеханического УЗО предъявляются чрезвычайно высокие требования по качеству: высокая чувствительность, линейность характеристики намагничивания, температурная и временная стабильность и др.
По этой причине для изготовления сердечников трансформаторов тока УЗО используется специальное высококачественное аморфное (некристаллическое) железо.УЗО типа АС -устройство защитного отключения реагирующие на синусоидальный переменный дифференциальный ток.УЗО типа А -устройство защитного отключения реагирующие на синусоидальный переменный дифференциальный ток и на пульсирующий постоянный дифференциальный ток.УЗО типа В -устройство защитного отключения реагирующие на синусоидальный переменный, пульсирующий постоянный и гладкий постоянный дифференциальные токи.
УЗО типа А дороже за счет большей универсальности, чем типа АС. К примеру, если в офисе, дома имеются персональные компьютеры, ксероксы, факсы, следует выбирать УЗО класса А, в указанных приборах применяются импульсные источники питания.Сколько необходимо приборов УЗО ?
Количество необходимых приборов УЗО потребуется для конкретной квартиры, более точно сможет дать ответ специалист после проведения соответствующих расчетов. Однако, зная принцип подсчета, можно и самому провести предварительную прикидку. Например, в однокомнатной квартире достаточно подключить в контур розеток одно УЗО, рассчитанное на ток утечки в 30 мА.
В трех-четырехкомнатной квартире, где установлено пятнадцать групп розеток, более логично использовать пять УЗО, а также по одному устройству на всю группу освещения, электроплиту и водонагреватель. Более чуткий прибор с номинальным отключающим дифференциальным током 10 мА желательно подключить к сети от которой запитана стиральная машина.

 

УЗО Ф — 1111 Двухполюсное устройство защитного отключения Ф — 1111 типа А или типа АС с номинальным дифференциальным отключающим током 10ма и номинальным током нагрузки 16А
УЗО Ф — 1211 aec72598d714c30b7733306394608929.jpg Двухполюсное устройство защитного отключения Ф — 1211 типа А, типа АС номинальным дифференциальным отключающим током 30ма и номинальным током нагрузки 16А (16/30/2р)
УЗО Ф — 2211 aec72598d714c30b7733306394608929.jpg Двухполюсное устройство защитного отключения Ф — 2211 типа А, типа АС номинальным дифференциальным отключающим током 30ма и номинальным током нагрузки 25А
УЗО Ф — 3211 aec72598d714c30b7733306394608929.jpg Двухполюсное устройство защитного отключения типа А или типа АС (40/30/2р)
УЗО Ф — 2212 08ff487c1621ba29680cef96e5ae76c8.jpg Четырехполюсное устройство защитного отключения типа АС или АС номинальным дифференциальным отключающим током 30ма и номинальным током нагрузки 25А (25/30/4р)
УЗО Ф — 3212 b84840640acf1a734d07e4ef4cdf4fc0.jpg Четырехполюсное устройство защитного отключения типа А или АС (40/30/4р)
УЗО Ф — 4212 4a0c12e8022b9a0efb287aad343b468b.jpg Четырехполюсное устройство защитного отключения типа АС (63/30/4р)
УЗО Ф — 1271 98665c8c4f0ba6c5a2fbf4dc7a413f8b.jpg Узо-вилка тип А (16/30)
46b8d270e9c6e120ed3c37f2e5c3cace.jpg  Сертификат на УЗО (1,57mb)

Становление рок-легенды

У Уильяма и Маргарет Янг, коренных шотландцев, переехавших в Австралию в 1963 году, всего было девять детей, в том числе трое сыновей — Джордж, Малкольм и Агнус. На удивление, все они были чрезвычайно талантливы в музыкальном плане. Первым братом, втянувшимся в рок-музыку, был старший, Джордж

Он с друзьями основал «Easybeats», подростковый рок-бэнд, чем привлек внимание младших Янгов к музыке. Малкольм, а затем и Агнус, взяв в руки гитару, обнаружили настоящий талант, обучаясь с рекордной быстротой

После нескольких неудачных попыток участия в музыкальных коллективах, в голову Малкольму Янгу приходит идея создать собственную группу, а его младший брат Агнус с энтузиазмом поддерживает эту задумку. Вокалиста Дейва Эванса братья нашли по объявлению в газете, а на барабаны и бас-гитару были приглашены знакомые молодых Янгов.

Название своей группы будущие легенды рока придумали, а точнее сказать, нашли, довольно быстро: надпись «AC/DC», что означает «переменно-постоянный ток» часто размещалась на бытовых приборах, вроде пылесоса или электрической швейной машины, где её и увидела сестра братьев Янг, Маргарет. Такое название показалось друзьям оригинальным, звучным и очень метким, и было единогласно принято всеми членами группы.

Так как к созданию группы Малкольм и Агнус подходили очень серьезно, они решили придумать также какой-то оригинальный сценический имидж. И здесь им снова помогла Маргарет, которая, как и родители молодых людей, очень поддерживала их в организации собственного музыкального коллектива. Она придумала оригинальную «изюминку» группы: выступать в форменной школьной одежде. Благодаря этой судьбоносной идее, Ангуса Янга узнают по коротким школьным штанишкам, галстучку и забавной кепке, в которые он бессменно облачается на концертах группы и по сей день.

847ff63dd6dea619a01ce499be19899f.jpg

Свое дебютное выступление группа провела в последний день 1973 года, а местом, где квинтет сыграл в первый раз, был выбран бар «Chequers». С этого момента начала своё существование хард-рок-группа, которой было предначертано стать мировой легендой и обрести огромное количество фанатов и последователей.

3 способа отличить электронное УЗО от электромеханического

  1. Схема, изображенная на корпусе устройства. В моделях электронного типа, есть значок усилителя — «А» в треугольнике. И нагрузка извне подводится к элементу. В электромеханических образцах сети питания идут в обход элементов УЗО, а к дифференциальному трансформатору ничего не подключено.
  2. Заряженный аккумулятор. К клеммам электроприбора присоединить провода, затем подключить их к полюсам батарейки, при необходимости поменять полярность. Если после манипуляций ничего не происходит, то устройство электронного типа.
  3. Постоянный магнит. Электромеханический прибор чувствителен к помехам и срабатывает при приближении магнита.

Число полюсов. Двух- или четырехполюсные используются, соответственно, в однофазных и трехфазных сетях.

Действующее значение переменного синусоидального тока

Если все положительные и отрицательные мгновенные значения переменного синусоидального тока сложить, то их сумма будет равна нулю. Но если алгебраическая сумма всех мгновенных значений за период равна нулю, то и среднее значение этого тока за период также равно нулю: Iavg(T)=0{\displaystyle I_{avg}(T)=0}.

Среднее значение синусоидального тока за период не может служить для измерения этого тока.

Чтобы судить о величине переменного синусоидального тока, переменный ток сравнивают с постоянным током по их тепловому действию.

Закон Джоуля — Ленца

Количество теплоты Q{\displaystyle Q}, выделяемое в единицу времени t{\displaystyle t} в рассматриваемом участке электрической цепи, пропорционально произведению квадрата силы тока I{\displaystyle I} на этом участке и электрического сопротивления R{\displaystyle R} участка цепи.

Количество теплоты в Джоулях: Q=I2Rt{\displaystyle Q=I^{2}{Rt}};

Количество теплоты в калориях: Q=0,24×I2Rt{\displaystyle Q={0,24}\times I^{2}{Rt}}, где

I{\displaystyle I} — сила тока, Ампер;

R{\displaystyle R} — электрическое сопротивление, Ом;

t{\displaystyle t} — время в секундах.

Два тока, один из которых синусоидальный, а другой постоянный, эквивалентны по тепловому действию, если они, протекая по одинаковым сопротивлениям, за одинаковые отрезки времени выделяют одинаковое количество тепла.
Действующее значение переменного синусоидального тока численно равно току постоянному, эквивалентному данному синусоидальному току, то есть выделяющему порознь с ним в одинаковом сопротивлении за одинаковый отрезок времени одинаковое количество тепла.

Найдено экспериментально, а затем подтверждено теоретически, что величина действующего значения переменного синусоидального тока находится в строго определённой зависимости от амплитуды этого тока: I=Im2{\displaystyle I={\frac {I_{m}}{\sqrt {2}}}}, то есть действующее значение I{\displaystyle I} переменного синусоидального тока в 2{\displaystyle {\sqrt {2}}} раз меньше амплитуды этого тока.

Амперметр электромагнитной или электродинамической системы, включенный в цепь переменного синусоидального тока, показывает действующее значение тока.

Аналогично действующему значению переменного синусоидального тока можно говорить о действующем значении переменной синусоидальной электродвижущей силы или переменного синусоидального напряжения.

Действующее значение напряжения в 2{\displaystyle {\sqrt {2}}} меньше его амплитуды: U=Um2{\displaystyle U={\frac {U_{m}}{\sqrt {2}}}} или Um=2×U{\displaystyle U_{m}={\sqrt {2}}\times U}.

Вольтметр электромагнитной или электродинамической системы, включенный в сеть переменного синусоидального тока, показывает действующее значение синусоидального напряжения.

Например, в электрической розетке электрическое напряжение ∼220 B{\displaystyle \thicksim {220}~B}, так как это действующее значение, амплитудное напряжение будет 220×1,41=311{\displaystyle {220}\times {1,41}={311}} Вольт.

Данные формулы справедливы только для синусоидального тока, если импульсы будут треугольной, пилообразной, прямоугольной или иной формы — требуется другая методика вычисления.


Методом можно определить среднее значение переменного синусоидального тока за половину периода, например за положительную полуволну синусоиды.

Среднее значение переменного синусоидального тока за половину периода равно IIavg(T2)=2πIm=0,637Im{\displaystyle {\frac {I}{I_{avg}\left({\frac {T}{2}}\right)}}={{\frac {2}{\pi }}I_{m}}={0,637}\;I_{m}}.

Также можно определить отношение k{\displaystyle k} действующего значения тока к среднему за половину периода (положительную полуволну). Это отношение для синусоидального тока равно:

k=IIavg(T2)=Im22πIm=π22=1,11{\displaystyle k={\frac {I}{I_{avg}\left({\frac {T}{2}}\right)}}={\frac {\frac {I_{m}}{\sqrt {2}}}{{\frac {2}{\pi }}I_{m}}}={\frac {\pi }{2{\sqrt {2}}}}={1,11}}.

УЗО срабатывает при замыкании PE и N при монтаже розетки. Почему

N и РЕ проводники в TN-(C-)S-сети, хотя в квартире и идут раздельно, но где-то со стороны источника соединены между собой (в месте разделения PEN-проводника: в этажном щитке или ВРУ здания в подвале или — в TN-S — на подстанции). При включении в сети любой нагрузки после места раздела ее рабочий ток течет по N-проводнику (при пятипроводном стояке эта нагрузка может быть вообще в другой квартире).

При замыкании в любом месте N и PE возникают две параллельные ветви для протекания тока нагрузки, часть тока течет через N и УЗО, а другая часть — ответвляется от N через РЕ в обход УЗО. Равенство токов в фазном и нулевом полюсах УЗО нарушается и УЗО срабатывает.

Можно объяснить это и чуть иначе. Из-за протекания токов нагрузки по N на нем возникает некоторое падение напряжения, потенциал N в квартире (розетке) несколько отличается от потенциала РЕ. При замыкании N и РЕ начинает течь уравнивающий ток, поскольку этот ток течет только через N-полюс и не течет через фазный полюс — УЗО срабатывает.

Применительно к ТТ все практически так же, только там еще между N и РЕ имеется сопротивление земли (сопротивление растеканию двух ЗУ: местного и всех ЗУ PEN), и практически всегда между N и местным ЗУ имеется разность потенциалов.

Для предотвращения такого явления, если от одного УЗО питаются несколько линий, на этих линиях нужно ставить автоматы 1p+N или 2p для одновременного отключения и фазы и рабочего нуля при монтажных или ремонтных работах на линии.

Важность правильного выбора УЗО

Сегодня на рынке присутствует большое число самых разных моделей выключателей дифференцированного тока, существенно различающихся между собой. Отличия заключаются в технических параметрах, методе установки и месте его использования.

Если модель ВДТ (УЗО) выбрана ошибочно, с неправильными характеристиками, то возможны следующие последствия.

Автоматика будет ошибочно реагировать, принимая за аварийную ситуацию маленькие утечки тока, которые обычно есть в домашней электросети. В старой проводке эти утечки встречаются чаще.

Часто люди выбирают ВДТ (УЗО) с завышенными характеристиками, в результате чего ВДТ может срабатывать с некоторой задержкой времени или вообще не почувствовать аварийную ситуацию как таковую. В этом случае вероятно получение электрической травмы.

Встречаются случаю, когда подключение ВДТ выполнено по неправильной схеме. Производители на корпусе самого устройства отображают схему подключения с расположением контактов для подключения фазных и нулевых проводников. Если подключение выполнит неправильно или подать питание с обратной стороны это также может привести к «нечувствительности» ВДТ при возникновении аварийной ситуации.

Чтобы подобные ошибки обошли вас стороной, давайте изучим основные характеристики УЗО (ВДТ) перед покупкой.

По токоограничению

Как бы быстро ни срабатывали расцепители, но это происходит за какое-то конечное время. Механическое размыкание контактов приводит к возникновению электрической дуги, пока расстояние между контактами не станет настолько большим, что дуга уже не сможет формироваться. Класс токоограничения показывает, за какой интервал времени происходит размыкание контактов с момента начала размыкания и до гашения дуги.

Этот параметр очень важен для длительного и безопасного функционирования электропроводки. Чем меньше время размыкания, тем меньше страдают провода электросети от токов короткого замыкания. Смысл токоограничения дифавтомата заключается в отключении защищаемой линии раньше, чем короткое замыкание наберет полную силу. Здесь он работает, как автоматический выключатель. Это позволяет защитить изоляцию от чрезмерного нагрева проводов и возгорания. Выделяют 3 класса:

  • устройства 1 класса имеют время гашения дуги в дугогасительгой камере более 10 мс;
  • приборы 2 класса осуществляют гашение электрической дуги за 6-10 мс;
  • устройства 3 класса токоограничения производят это за 2,5-6 мс.

Чтобы определить класс, надо взглянуть на переднюю панель корпуса дифавтомата. Он виден в прямоугольной рамке под значением номинальной отключающей способности. Первый класс никак не обозначают.

Принцип работы УЗО. 2 главных узла

Работа электроаппарата основана на принципе постоянного сравнения величины тока на входе и выходе. При равенстве значений сеть считается стабильной и безопасной. Если появляется разница, то чувствительный элемент реагирует на изменение параметров и срабатывает механизм защиты.

Главный узел прибора — дифференциальный трансформатор, который реагирует на изменения параметров в электросети. В нормальном режиме результирующий ток, проходящий через сердечник равен нулю. При появлении тока утечки величина тока в фазном и нулевом проводе различна, что провоцирует отключение соленоида и размыкание контактов электроаппарата.

Дифференциальный автомат совмещает в себе 2 устройства: УЗО и автоматический выключатель, защищая одновременно электрические сети от токов утечки и коротких замыканий.

4686cacf87a5c66b9286d36ad48b42b8.png
Рис. 3. Принцип работы УЗО

Как отличить электронное УЗО или дифавтомат от неэлектронного

Широко распространен «тест с батарейкой»: не подключенное к сети УЗО включается (взводится) и к одному из его полюсов подключается обычная пальчиковая батарейка (фактически устраивается КЗ батарейки через замкнутые контакты УЗО). От броска тока, а этот ток с точки зрения УЗО является дифференциальным, т. к. течет только через один полюс, неэлектронное (электромеханическое) УЗО срабатывает. Причем, УЗО типа «А» обязано срабатывать при любой полярности подключения батарейки, а типа «АС» — скорее всего будет срабатывать только при одной, поэтому если УЗО не сработало с первой(ых) попытки, нужно перевернуть батарейку и попробовать еще раз. Электронные УЗО в этом тесте не срабатывают, поскольку отсутствует необходимое для их работы питание 220 В.

Что означает надпись на дифф. автомате 4P 40А30mA 4М тип А 4,5kA

  • — означает, что дифференциальный автомат имеет четыре полюса и предназначен для работы в трехфазной сети.
  • 40А — означает, что ток короткого замыкания, при котором сработает автоматическая защита в данном устройстве, равен 40А.
  • 30мА — означает, что дифференциальный автомат предназначен для обнаружения тока утечки в 30мА и защиты от поражения человека электрическим током при общем бытовом применении.
  • — означает, что устройство занимает четыре модуля (70 мм в ширину) на DIN-рейке.
  • тип А — означает, что размыкание гарантировано в случае, если синусоидальный или пульсирующий разностный ток внезапно возникает или медленно увеличивается.
  • 4,5кА — означает, что максимальный ток, при котором дифф. автомат сработает на отключение.

Как избежать выхода из строя устройства 2 правила проверки

Производители оснащают изделия узлом контроля работоспособности «Тест». Программа позволяет проверить соответствие нормам и стандартам основные параметры аппарата электрозащиты: быстродействие и фиксирование дифференциального тока утечки. Оптимальная периодичность проверки — 1 раз в месяц.

Важно: кроме контроля основных функций регулярное тестирование определяет исправность PE-проводника, его целостность и качество соединения с заземлением, селективность электроаппарата при многоуровневой системе электрозащиты в доме. . При нажатии кнопки «Тест» на прибор подается электроток, равный величине отключающему дифференциальному

Длительность протекания тестирования не ограничена по времени. Успешное проведение теста (отключение аппарата электрозащиты) свидетельствует о нескольких факторах:

При нажатии кнопки «Тест» на прибор подается электроток, равный величине отключающему дифференциальному. Длительность протекания тестирования не ограничена по времени. Успешное проведение теста (отключение аппарата электрозащиты) свидетельствует о нескольких факторах:

  1. Быстродействие достаточно, соответствует заявленным характеристикам;
  2. Чувствительность прибора достаточна для срабатывания защиты при номинальном дифференциальном токе.

В случае отсутствия реакции на манипуляции УЗО необходимо заменить, т.к. его чувствительность недостаточна либо время отключения превышает заявленное.

Важно: регулярно (не реже 1 раза в 6 месяцев) необходимо проводить тестирование электроаппарата специальными тестерами. В таких случаях поверка электрозащиты осуществляется более точно: быстродействие ограничено 200мс, а порог чувствительности больше номинального. Это позволяет предотвратить все возможные аварийные ситуации в бытовых электросетях.

В видеоролике подробно описаны действия по проверке работоспособности УЗО в бытовых условиях с помощью подручных средств.

УЗО в бытовых электрических сетях — главная защита человека от поражения электрическим током. Понимание принципа работы и устройства аппарата позволяет быстро устранить сбои в системе внутреннего электроснабжения и предотвратить аварийные ситуации.

По току мгновенного расцепления

По время-токовой характеристике дифавтоматы, также как и автоматические выключатели делятся на несколько классов. Каждая категория указывает, во сколько раз ток мгновенного расцепления должен быть больше номинального, чтобы прибор сработал. По российскому ГОСТ Р 50345-99 этих категорий три:

  1. вид В. Приборы этой категории мгновенно срабатывают при превышении контролируемого тока в 3-5 раз по сравнению с номинальным током;
  2. вид С. Устройство с таким обозначением срабатывает в случае превышения номинального тока в 5-10 раз;
  3. вид D. Дифференциальный автомат относящийся к данному классу среагирует при токах превышения номинала в 10-20 раз.

На корпусах устройств буквы с обозначением вида электромагнитного расцепителя по току мгновенного расцепления стоят перед цифрами обозначающими значение номинального тока. То есть, если на приборе написано С16, значит номинальный ток равен 16 А, а мгновенного расцепления 80-160 А.

В европейском союзе имеются приборы дополнительного типа А. В устройствах данного вида ток мгновенного срабатывания в 2-3 раза больше номинального тока. Есть еще несколько типов (K, Z), которые установили сами производители. Здесь уже лучше обратиться к инструкции по эксплуатации на данный тип устройства, возможно, это будет именно тот прибор, который Вам нужен.

Другие различия

Дифавтоматы различаются и по климатическому исполнению. На передней панели устройства внутри изображения снежинки указывается нижняя рабочая температура. Приборы подразделяются и по номинальной частоте контролируемой сети. Разновидности дифавтоматов на этом не заканчиваются.

Ко всему прочему дифференциальный автомат подразделяется на два вида: электронный и электромеханический. Первые компактнее, но имеют один недостаток, при отсутствии питающего напряжения на электронной плате они не работают. Это может произойти при обрыве нулевого провода.

В этот момент происходит перераспределение токов и необходимо срочно отключить электросеть, но электронный дифавтомат не поможет. Здесь справятся только второй (электромеханический) тип устройства, который не нуждается в дополнительном питании, чем отличается от первых, ему достаточно токов утечки. Чисто внешне приборы отличить очень трудно. Самый простой способ использовать батарейку типа «Крона». При подключении к устройству в обход дифференциального трансформатора, электромеханический дифавтомат должен сработать, а электронный нет.

Обозначения на схемах и в приборах

6f145500a3af51b6c213202830cc3639.jpgОбщепринято, что направление электричества идет от контакта со знаком плюс к контакту со знаком минус.

Места с большими потенциалами имеют название «положительный полюс» и обозначаются значком + (плюс). Точки с меньшими потенциалами, соответственно, именуются «отрицательный полюс» и их обозначают знаком — (минус).

Изначально принято, что электроизоляция положительных проводов имеет красный цвет, провода же со знаком «минус» окрашивают в синий или черный цвета.

Условные обозначения на электроприборах: — или =. Однонаправленное электричество (в том числе постоянное) обозначается латиницей DC, или же используется символ Юникода — U+2393.

Аббревиатура AC и DC прочно укоренилась в повседневном обиходе и употребляется наравне с привычными названиями «переменный» и «постоянный»:

  • обозначение постоянного напряжения (—) или DC (Direct Current);
  • знак переменного тока (~) или AC (Alternating Current) — обозначение переменного тока.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и
признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.

Единица измерения тока — Ампер.
Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения — Вольт.
Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.Коэффициент пульсаций — величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Похожие статьи: .

Замечания и предложения принимаются и приветствуются!

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here